TY - JOUR
T1 - In vitro modulation of somatic glycine‐like immunoreactivity in presumed glycinergic neurons
AU - Wickesberg, Robert E.
AU - Whitlon, Donna
AU - Oertel, Donata
N1 - Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 1994/1/15
Y1 - 1994/1/15
N2 - Previous studies indicate that tuberculoventral and cartwheel cells in the dorsal cochlear nucleus as well as a group of stellate cells in the ventral cochlear nucleus are likely to be glycinergic. To test whether these neurons contain higher levels of free glycine than cells that are probably not glycinergic, immunocytochemical studies with antibodies against glycine conjugates were undertaken on slices of the murine cochlear nuclear complex. Present results show that the cell bodies of all three groups of neurons are immunolabeled. However, the somatic labeling of the tuberculoventral and cartwheel cells can be modulated by experimental conditions. In slices fixed immediately after cutting, many cell bodies in the deep layer of the dorsal cochlear nucleus (DCN), presumably tuberculoventral neurons, are labeled. As a slice is incubated in vitro, cell bodies in the deep layer of the DCN lose their glycine‐like immunoreactivity. After 7 hours in vitro, labeled cells are absent in the deep DCN, but the immunoreactivity can be regained by electrically stimulating the auditory nerve for 20 minutes. The loss of immunoreactivity is prevented by electrical stimulation, by axotomy, and by inclusion of 0.8 μM tetrodotoxin, or 1 μM strychnine, or 50 μM colchicine or 50 μM μ‐lumicolchicine in the bathing saline. Cartwheel cells retain their immunoreactivity during incubation in vitro without electrical stimulation, but lose it under two conditions. One is following a cut across the ventral cochlear nucleus (VCN) that severs most of their granule cell input, and the other is the inclusion of tetrodotoxin in the bathing saline. The labeling of cell bodies in the ventral cochlear nucleus and of puncta and processes is not changed by any of these experimental manipulations. © 1994 Wiley‐Liss, Inc.
AB - Previous studies indicate that tuberculoventral and cartwheel cells in the dorsal cochlear nucleus as well as a group of stellate cells in the ventral cochlear nucleus are likely to be glycinergic. To test whether these neurons contain higher levels of free glycine than cells that are probably not glycinergic, immunocytochemical studies with antibodies against glycine conjugates were undertaken on slices of the murine cochlear nuclear complex. Present results show that the cell bodies of all three groups of neurons are immunolabeled. However, the somatic labeling of the tuberculoventral and cartwheel cells can be modulated by experimental conditions. In slices fixed immediately after cutting, many cell bodies in the deep layer of the dorsal cochlear nucleus (DCN), presumably tuberculoventral neurons, are labeled. As a slice is incubated in vitro, cell bodies in the deep layer of the DCN lose their glycine‐like immunoreactivity. After 7 hours in vitro, labeled cells are absent in the deep DCN, but the immunoreactivity can be regained by electrically stimulating the auditory nerve for 20 minutes. The loss of immunoreactivity is prevented by electrical stimulation, by axotomy, and by inclusion of 0.8 μM tetrodotoxin, or 1 μM strychnine, or 50 μM colchicine or 50 μM μ‐lumicolchicine in the bathing saline. Cartwheel cells retain their immunoreactivity during incubation in vitro without electrical stimulation, but lose it under two conditions. One is following a cut across the ventral cochlear nucleus (VCN) that severs most of their granule cell input, and the other is the inclusion of tetrodotoxin in the bathing saline. The labeling of cell bodies in the ventral cochlear nucleus and of puncta and processes is not changed by any of these experimental manipulations. © 1994 Wiley‐Liss, Inc.
KW - activity
KW - brain slice
KW - cochlear nucleus
KW - colchicine
KW - tetrodotoxin
UR - http://www.scopus.com/inward/record.url?scp=0027972532&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027972532&partnerID=8YFLogxK
U2 - 10.1002/cne.903390302
DO - 10.1002/cne.903390302
M3 - Article
C2 - 8132865
AN - SCOPUS:0027972532
SN - 0021-9967
VL - 339
SP - 311
EP - 327
JO - Journal of Comparative Neurology
JF - Journal of Comparative Neurology
IS - 3
ER -