Abstract
The field-driven in-situ transmission electron microscopy (TEM) technique was developed to examine micromechanisms of field-induced cracking in ferroelectric ceramics. The technique was constructed by combining a selectively deposited thin film electrode configuration with a modified hot stage to deliver a required electric voltage to a ferroelectric TEM specimen. Under cyclic electric fields, microcracks were found to initiate from pores at the triple junctions and propagate along the grain-boundary in a lead zirconate titanate (PZT) ceramic. Grain-boundary cavitation and coalescence of microcracks were directly observed for the first time during field-induced fracture of PZT at room temperature. The results suggest that dielectric breakdown of the grain-boundary phase was conducive to grain-boundary cavitation, and the crack growth followed the progressive accumulation of the cavity density with electric cycling.
Original language | English (US) |
---|---|
Pages (from-to) | 1463-1478 |
Number of pages | 16 |
Journal | Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties |
Volume | 82 |
Issue number | 8 |
DOIs | |
State | Published - May 2002 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Materials Science(all)
- Condensed Matter Physics
- Physics and Astronomy (miscellaneous)
- Metals and Alloys