We present a new experimental method for the mechanical characterization of freestanding thin films with thickness on the order of nanometers to micrometers. The method allows, for the first time, in-situ SEM and TEM observation of materials response under uniaxial tension, with measurements of both stresses and strains under a wide variety of environmental conditions such as temperature and humidity. The materials that can be tested include metals, dielectrics, and multi-layer composites that can be deposited/grown on a silicon substrate. The method involves lithography and bulk micromachining techniques to pattern the specimen of desired geometry, release the specimen from the substrate, and co-fabricate a force sensor with the specimen. Co-fabrication provides perfect alignment and gripping. The tensile testing fits an existing TEM straining stage, and a SEM stage. We demonstrate the proposed methodology by fabricating a 200 nm thick, 23.5 μm wide, and 185 μm long freestanding sputter deposited aluminum specimen. The testing was done in-situ inside an environmental SEM chamber. The stress-strain diagram of the specimen shows a linear elastic regime up to the yield stress δy = 330 MPa, with an elastic modulus E = 74.6 GPa.

Original languageEnglish (US)
Article numberBF02411059
Pages (from-to)123-128
Number of pages6
JournalExperimental Mechanics
Issue number1
StatePublished - 2002


  • MEMS fabrication
  • Mechanical properties
  • Tensile testing
  • Thin films

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'In-situ tensile testing of nano-scale specimens in SEM and TEM'. Together they form a unique fingerprint.

Cite this