In Situ Observations of Shape Evolution During Copper Dissolution Using Atomic Force Microscopy

B. J. Cruickshank, Andrew A. Gewirth, Rebecca Mohr Rynders, Richard C. Alkire

Research output: Contribution to journalArticlepeer-review


Atomic force microscopy was used to monitor, in situ, the shape evolution of polycrystalline copper during anodic dissolution in 0.5M H2SO4. During dissolution of the copper surface under a small anodic potential (30 mV), an overlayer of material that resulted from mechanical polishing was removed, exposing the underlying grain boundaries. A chemically etched sample was exposed to the same experimental conditions, and no overlayer was observed. Dissolution of the copper bulk metal was monitored under a higher applied potential (100 mV, 0.5M H2SO4). The overlayer was immediately removed, and the dissolution produced a nonuniform, crystallographically-etched surface. The inhibiting effect of benzotriazole (BTA) on copper dissolution in 0.5M H2SO4/20 mM BTA was observed. Copper dissolution did not proceed at 100 mV or 200 mV applied potential; but at 300 mV, rapid localized dissolution resulted in the formation of pit-like features.

Original languageEnglish (US)
Pages (from-to)2829-2832
Number of pages4
JournalJournal of the Electrochemical Society
Issue number10
StatePublished - Oct 1992

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Renewable Energy, Sustainability and the Environment


Dive into the research topics of 'In Situ Observations of Shape Evolution During Copper Dissolution Using Atomic Force Microscopy'. Together they form a unique fingerprint.

Cite this