In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process

Wen Tso Liu, Alex T. Nielsen, Jer Horng Wu, Chin Sun Tsai, Yoshitaka Matsuo, Søren Molin

Research output: Contribution to journalArticlepeer-review

Abstract

Polyphosphate- and polyhydroxyalkanoate (PHA)-accumulating traits of predominant microorganisms in an efficient enhanced biological phosphorus removal (EBPR) process were investigated systematically using a suite of non-culture-dependent methods. Results of 16S rDNA clone library and fluorescence in situ hybridization (FISH) with rRNA-targeted, group-specific oligonucleotide probes indicated that the microbial community consisted mostly of the α- (9.5% of total cells), β- (41.3%) and γ- (6.8%) subclasses of the class Proteobacteria, Flexibacter-Cytophaga (4.5%) and the Gram-positive high G+C (HGC) group (17.9%). With individual phylogenetic groups or subgroups, members of Candidatus Accumulibacter phosphatis in the β-2 subclass, a novel HGC group closely related to Tetrasphaera spp., and a novel γ-proteobacterial group were the predominant populations. Furthermore, electron microscopy with energy-dispersive X-ray analysis was used to validate the staining specificity of 4,6-diamino-2-phenylindole (DAPI) for intracellular polyphosphate and revealed the composition of polyphosphate granules accumulated in predominant bacteria as mostly P, Ca and Na. As a result, DAPI and PHA staining procedures could be combined with FISH to identify directly the polyphosphate- and PHA-accumulating traits of different phylogenetic groups. Members of Accumulibacter phosphatis and the novel gamma-proteobacterial group were observed to accumulate both polyphosphate and PHA. In addition, one novel rod-shaped group, closely related to coccus-shaped Tetrasphaera, and one filamentous group resembling Candidatus Nostocoidia limicola in the HGC group were found to accumulate polyphosphate but not PHA. No cellular inclusions were detected in most members of the α-Proteobacteria and the Cytophaga-Flavobacterium group. The diversified functional traits observed suggested that different substrate metabolisms were used by predominant phylogenetic groups in EBPR processes.

Original languageEnglish (US)
Pages (from-to)110-122
Number of pages13
JournalEnvironmental Microbiology
Volume3
Issue number2
DOIs
StatePublished - 2001
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Ecology, Evolution, Behavior and Systematics

Fingerprint

Dive into the research topics of 'In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process'. Together they form a unique fingerprint.

Cite this