Improving photosynthesis and crop productivity by accelerating recovery from photoprotection

Johannes Kromdijk, Katarzyna Głowacka, Lauriebeth Leonelli, Stéphane T. Gabilly, Masakazu Iwai, Krishna K. Niyogi, Stephen P. Long

Research output: Contribution to journalArticle

Abstract

Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit leaves are shaded by clouds or other leaves, this protective dissipation continues for many minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up to 20% of their potential yield. Here, we describe the bioengineering of an accelerated response to natural shading events in Nicotiana (tobacco), resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light. Because the photoprotective mechanism that has been altered is common to all flowering plants and crops, the findings provide proof of concept for a route to obtaining a sustainable increase in productivity for food crops and a much-needed yield jump.

Original languageEnglish (US)
Pages (from-to)857-861
Number of pages5
JournalScience
Volume354
Issue number6314
DOIs
StatePublished - Nov 18 2016

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Improving photosynthesis and crop productivity by accelerating recovery from photoprotection'. Together they form a unique fingerprint.

  • Press / Media

    Cite this

    Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857-861. https://doi.org/10.1126/science.aai8878