TY - GEN
T1 - Improving 3D human pose estimation via 3D part affinity fields
AU - Liu, Ding
AU - Zhao, Zixu
AU - Wang, Xinchao
AU - Hu, Yuxiao
AU - Zhang, Lei
AU - Huang, Thomas S.
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/3/4
Y1 - 2019/3/4
N2 - 3D human pose estimation from monocular images has become a heated area in computer vision recently. For years, most deep neural network based practices have adopted either an end-to-end approach, or a two-stage approach. An end-to-end network typically estimates 3D human poses directly from 2D input images, but it suffers from the shortage of 3D human pose data. It is also obscure to know if the inaccuracy stems from limited visual understanding or 2D-to-3D mapping. Whereas a two-stage directly lifts those 2D keypoint outputs to the 3D space, after utilizing an existing network for 2D keypoint detections. However, they tend to ignore some useful contextual hints from the 2D raw image pixels. In this paper, we introduce a two-stage architecture that can eliminate the main disadvantages of both these approaches. During the first stage we use an existing state-of-the-art detector to estimate 2D poses. To add more contextual information to help lifting 2D poses to 3D poses, we propose 3D Part Affinity Fields (3D-PAFs). We use 3D-PAFs to infer 3D limb vectors, and combine them with 2D poses to regress the 3D coordinates. We trained and tested our proposed framework on Human3.6M, the most popular 3D human pose benchmark dataset. Our approach achieves the state-of-the-art performance, which proves that with right selections of contextual information, a simple regression model can be very powerful in estimating 3D poses.
AB - 3D human pose estimation from monocular images has become a heated area in computer vision recently. For years, most deep neural network based practices have adopted either an end-to-end approach, or a two-stage approach. An end-to-end network typically estimates 3D human poses directly from 2D input images, but it suffers from the shortage of 3D human pose data. It is also obscure to know if the inaccuracy stems from limited visual understanding or 2D-to-3D mapping. Whereas a two-stage directly lifts those 2D keypoint outputs to the 3D space, after utilizing an existing network for 2D keypoint detections. However, they tend to ignore some useful contextual hints from the 2D raw image pixels. In this paper, we introduce a two-stage architecture that can eliminate the main disadvantages of both these approaches. During the first stage we use an existing state-of-the-art detector to estimate 2D poses. To add more contextual information to help lifting 2D poses to 3D poses, we propose 3D Part Affinity Fields (3D-PAFs). We use 3D-PAFs to infer 3D limb vectors, and combine them with 2D poses to regress the 3D coordinates. We trained and tested our proposed framework on Human3.6M, the most popular 3D human pose benchmark dataset. Our approach achieves the state-of-the-art performance, which proves that with right selections of contextual information, a simple regression model can be very powerful in estimating 3D poses.
UR - http://www.scopus.com/inward/record.url?scp=85063588424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063588424&partnerID=8YFLogxK
U2 - 10.1109/WACV.2019.00112
DO - 10.1109/WACV.2019.00112
M3 - Conference contribution
AN - SCOPUS:85063588424
T3 - Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
SP - 1004
EP - 1013
BT - Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 19th IEEE Winter Conference on Applications of Computer Vision, WACV 2019
Y2 - 7 January 2019 through 11 January 2019
ER -