Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels

Ruiqing Lu, Chang Zhang, Maria Piatkovsky, Mathias Ulbricht, Moshe Herzberg, Thanh H. Nguyen

Research output: Contribution to journalArticlepeer-review

Abstract

Potable water reuse has been adopted by cities suffering water scarcity in recent years. The microbial safety in water reuse, especially with respect to pathogenic viruses, is still a concern for water consumers. Membrane filtration can achieve sufficient removal of pathogenic viruses without disinfection byproducts, but the required energy is intensive. In this study, we graft-polymerized zwitterionic SPP ([3-(methacryloylamino) propyl] dimethyl (3-sulfopropyl) ammonium hydroxide) on a 150 kDa ultrafiltration polyethersulfone membrane to achieve a significantly higher virus removal. The redox-initiated graft-polymerization was performed in an aqueous solution during filtration of the monomer and initiators, allowing for functionalizing the membrane pores with hydrophilic polySPP. Bacteriophage MS2 and human adenovirus type 2 (HAdV-2) were used as surrogates for pathogenic human norovirus and human adenovirus. The grafting resulted in ∼18% loss of the membrane permeability but an increase of 4 log10 in HAdV-2 removal and 3 log10 in MS2 removal. The pristine and the grafted membranes were both conditioned with soluble microbial products (SMP) extracted from a full-scale membrane bioreactor (MBR) in order to test the virus removal after fouling the membranes. After fouling, the HAdV-2 removal by the grafted membrane was 1 log10 higher than that of the pristine membrane. For MS2, the grafted membrane after fouling with SMP achieved an additional 5 log10 removal compared to the unmodified membrane. The simple graft-polymerization functionalization of commercialized membrane achieving enhanced virus removal efficiency highlights the promise of membrane filtration for pathogen control in potable water reuse.

Original languageEnglish (US)
Pages (from-to)86-94
Number of pages9
JournalWater Research
Volume116
DOIs
StatePublished - 2017

Keywords

  • Graft-polymerization
  • Repulsion force
  • Virus removal
  • Zwitterionic

ASJC Scopus subject areas

  • Water Science and Technology
  • Ecological Modeling
  • Pollution
  • Waste Management and Disposal
  • Environmental Engineering
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels'. Together they form a unique fingerprint.

Cite this