Abstract
There is a growing interest in accurate and comparable measurements of the CO2 photocompensation point (Γ*), a vital parameter to model leaf photosynthesis. The Γ* is measured as the common intersection of several CO2 response curves, but this method may incorrectly estimate Γ* by using linear fits to extrapolate curvilinear responses and single conductances to convert intercellular photocompensation points (Ci*) to chloroplastic Γ*. To determine the magnitude and minimize the impact of these artefacts on Γ* determinations, we used a combination of meta-analysis, modelling and original measurements to develop a framework to accurately determine Ci*. Our modelling indicated that the impact of using linear fits could be minimized based on the measurement CO2 range. We also propose a novel method of analysing common intersection measurements using slope-intercept regression. Our modelling indicated that slope-intercept regression is a robust analytical tool that can help determine if a measurement is biased because of multiple internal conductances to CO2. Application of slope-intercept regression to Nicotiana tabacum and Glycine max revealed that multiple conductances likely have little impact to Ci* measurements in these species. These findings present a robust and easy to apply protocol to help resolve key questions concerning CO2 conductance through leaves.
Original language | English (US) |
---|---|
Pages (from-to) | 2462-2474 |
Number of pages | 13 |
Journal | Plant Cell and Environment |
Volume | 38 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2015 |
Keywords
- Photorespiration
- Photosynthesis
ASJC Scopus subject areas
- Physiology
- Plant Science