Abstract
This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be (5.91±0.09)×10-43 cm2/fission with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes U235, U238, Pu239, and Pu241 are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be 0.952±0.014±0.023 (1.001±0.015±0.027) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model.
Original language | English (US) |
---|---|
Article number | 052004 |
Journal | Physical Review D |
Volume | 100 |
Issue number | 5 |
DOIs | |
State | Published - Sep 9 2019 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)
Fingerprint Dive into the research topics of 'Improved measurement of the reactor antineutrino flux at Daya Bay'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Improved measurement of the reactor antineutrino flux at Daya Bay. / Adey, D.; An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Deng, F. S.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, Z. J.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. L.; Ji, X. P.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Koerner, L. W.; Kohn, S.; Kramer, M.; Langford, T. J.; Lebanowski, L.; Lee, J.; Lee, J. H.C.; Lei, R. T.; Leitner, R.; Leung, J. K.C.; Li, C.; Li, F.; Li, H. L.; Li, Q. J.; Li, S.; Li, S. C.; Li, S. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. C.; Liu, J. L.; Liu, Y.; Liu, Y. H.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Marshall, C.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mora Lepin, L.; Napolitano, J.; Naumov, D.; Naumova, E.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H. R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S.J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, J. L.; Treskov, K.; Tse, W. H.; Tull, C. E.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, J.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wei, L. H.; Wen, L. J.; Whisnant, K.; White, C. G.; Wise, T.; Wong, H. L.H.; Wong, S. C.F.; Worcester, E.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xing, Z. Z.; Xu, J. L.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Yeh, M.; Young, B. L.; Yu, H. Z.; Yu, Z. Y.; Yue, B. B.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, F. Y.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. F.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. Y.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zheng, P.; Zhou, L.; Zhuang, H. L.; Zou, J. H.
In: Physical Review D, Vol. 100, No. 5, 052004, 09.09.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Improved measurement of the reactor antineutrino flux at Daya Bay
AU - Adey, D.
AU - An, F. P.
AU - Balantekin, A. B.
AU - Band, H. R.
AU - Bishai, M.
AU - Blyth, S.
AU - Cao, D.
AU - Cao, G. F.
AU - Cao, J.
AU - Chan, Y. L.
AU - Chang, J. F.
AU - Chang, Y.
AU - Chen, H. S.
AU - Chen, S. M.
AU - Chen, Y.
AU - Chen, Y. X.
AU - Cheng, J.
AU - Cheng, Z. K.
AU - Cherwinka, J. J.
AU - Chu, M. C.
AU - Chukanov, A.
AU - Cummings, J. P.
AU - Deng, F. S.
AU - Ding, Y. Y.
AU - Diwan, M. V.
AU - Dolgareva, M.
AU - Dove, J.
AU - Dwyer, D. A.
AU - Edwards, W. R.
AU - Gonchar, M.
AU - Gong, G. H.
AU - Gong, H.
AU - Gu, W. Q.
AU - Guo, L.
AU - Guo, X. H.
AU - Guo, Y. H.
AU - Guo, Z.
AU - Hackenburg, R. W.
AU - Hans, S.
AU - He, M.
AU - Heeger, K. M.
AU - Heng, Y. K.
AU - Higuera, A.
AU - Hsiung, Y. B.
AU - Hu, B. Z.
AU - Hu, T.
AU - Hu, Z. J.
AU - Huang, H. X.
AU - Huang, X. T.
AU - Huang, Y. B.
AU - Huber, P.
AU - Huo, W.
AU - Hussain, G.
AU - Jaffe, D. E.
AU - Jen, K. L.
AU - Ji, X. L.
AU - Ji, X. P.
AU - Johnson, R. A.
AU - Jones, D.
AU - Kang, L.
AU - Kettell, S. H.
AU - Koerner, L. W.
AU - Kohn, S.
AU - Kramer, M.
AU - Langford, T. J.
AU - Lebanowski, L.
AU - Lee, J.
AU - Lee, J. H.C.
AU - Lei, R. T.
AU - Leitner, R.
AU - Leung, J. K.C.
AU - Li, C.
AU - Li, F.
AU - Li, H. L.
AU - Li, Q. J.
AU - Li, S.
AU - Li, S. C.
AU - Li, S. J.
AU - Li, W. D.
AU - Li, X. N.
AU - Li, X. Q.
AU - Li, Y. F.
AU - Li, Z. B.
AU - Liang, H.
AU - Lin, C. J.
AU - Lin, G. L.
AU - Lin, S.
AU - Lin, S. K.
AU - Lin, Y. C.
AU - Ling, J. J.
AU - Link, J. M.
AU - Littenberg, L.
AU - Littlejohn, B. R.
AU - Liu, J. C.
AU - Liu, J. L.
AU - Liu, Y.
AU - Liu, Y. H.
AU - Loh, C. W.
AU - Lu, C.
AU - Lu, H. Q.
AU - Lu, J. S.
AU - Luk, K. B.
AU - Ma, X. B.
AU - Ma, X. Y.
AU - Ma, Y. Q.
AU - Malyshkin, Y.
AU - Marshall, C.
AU - Martinez Caicedo, D. A.
AU - McDonald, K. T.
AU - McKeown, R. D.
AU - Mitchell, I.
AU - Mora Lepin, L.
AU - Napolitano, J.
AU - Naumov, D.
AU - Naumova, E.
AU - Ochoa-Ricoux, J. P.
AU - Olshevskiy, A.
AU - Pan, H. R.
AU - Park, J.
AU - Patton, S.
AU - Pec, V.
AU - Peng, J. C.
AU - Pinsky, L.
AU - Pun, C. S.J.
AU - Qi, F. Z.
AU - Qi, M.
AU - Qian, X.
AU - Qiu, R. M.
AU - Raper, N.
AU - Ren, J.
AU - Rosero, R.
AU - Roskovec, B.
AU - Ruan, X. C.
AU - Steiner, H.
AU - Sun, J. L.
AU - Treskov, K.
AU - Tse, W. H.
AU - Tull, C. E.
AU - Viren, B.
AU - Vorobel, V.
AU - Wang, C. H.
AU - Wang, J.
AU - Wang, M.
AU - Wang, N. Y.
AU - Wang, R. G.
AU - Wang, W.
AU - Wang, W.
AU - Wang, X.
AU - Wang, Y. F.
AU - Wang, Z.
AU - Wang, Z.
AU - Wang, Z. M.
AU - Wei, H. Y.
AU - Wei, L. H.
AU - Wen, L. J.
AU - Whisnant, K.
AU - White, C. G.
AU - Wise, T.
AU - Wong, H. L.H.
AU - Wong, S. C.F.
AU - Worcester, E.
AU - Wu, Q.
AU - Wu, W. J.
AU - Xia, D. M.
AU - Xing, Z. Z.
AU - Xu, J. L.
AU - Xue, T.
AU - Yang, C. G.
AU - Yang, H.
AU - Yang, L.
AU - Yang, M. S.
AU - Yang, M. T.
AU - Yang, Y. Z.
AU - Ye, M.
AU - Yeh, M.
AU - Young, B. L.
AU - Yu, H. Z.
AU - Yu, Z. Y.
AU - Yue, B. B.
AU - Zeng, S.
AU - Zhan, L.
AU - Zhang, C.
AU - Zhang, C. C.
AU - Zhang, F. Y.
AU - Zhang, H. H.
AU - Zhang, J. W.
AU - Zhang, Q. M.
AU - Zhang, R.
AU - Zhang, X. F.
AU - Zhang, X. T.
AU - Zhang, Y. M.
AU - Zhang, Y. M.
AU - Zhang, Y. X.
AU - Zhang, Y. Y.
AU - Zhang, Z. J.
AU - Zhang, Z. P.
AU - Zhang, Z. Y.
AU - Zhao, J.
AU - Zheng, P.
AU - Zhou, L.
AU - Zhuang, H. L.
AU - Zou, J. H.
N1 - Funding Information: The Daya Bay Experiment is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the Ministry of Education in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth, and Sports of the Czech Republic, the Charles University Research Centre UNCE, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission of Scientific and Technological Research of Chile, We acknowledge Yellow River Engineering Consulting Co., Ltd., and China Railway 15th Bureau Group Co., Ltd., for building the underground laboratory. We are grateful for the ongoing cooperation from the China Guangdong Nuclear Power Group and China Light & Power Company. [1] 1 C. L. Cowan , F. Reines , F. B. Harrison , H. W. Kruse , and A. D. McGuire , Science 124 , 103 ( 1956 ). SCIEAS 0036-8075 10.1126/science.124.3212.103 [2] 2 K. Eguchi ( KamLAND Collaboration ) , Phys. Rev. Lett. 90 , 021802 ( 2003 ). PRLTAO 0031-9007 10.1103/PhysRevLett.90.021802 [3] 3 F. P. An ( Daya Bay Collaboration ) , Phys. Rev. Lett. 108 , 171803 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.108.171803 [4] 4 J. K. Ahn ( RENO Collaboration ) , Phys. Rev. Lett. 108 , 191802 ( 2012 ). PRLTAO 0031-9007 10.1103/PhysRevLett.108.191802 [5] 5a B. Pontecorvo , Zh. Eksp. Teor. Fiz. 33 , 549 ( 1957 ) ZETFA7 0044-4510 5b [ B. Pontecorvo Sov. Phys. JETP 6 , 429 ( 1957 )]. SPHJAR 0038-5646 [6] 6a B. Pontecorvo , Zh. Eksp. Teor. Fiz. 53 , 1717 ( 1967 ) ZETFA7 0044-4510 6b [ B. Pontecorvo Sov. Phys. JETP 26 , 984 ( 1968 )]. SPHJAR 0038-5646 [7] 7 Z. Maki , M. Nakagawa , and S. Sakata , Prog. Theor. Phys. 28 , 870 ( 1962 ). PTPKAV 0033-068X 10.1143/PTP.28.870 [8] 8 P. Huber , Phys. Rev. C 84 , 024617 ( 2011 ). PRVCAN 0556-2813 10.1103/PhysRevC.84.024617 [9] 9 T. A. Mueller , Phys. Rev. C 83 , 054615 ( 2011 ). PRVCAN 0556-2813 10.1103/PhysRevC.83.054615 [10] 10 G. Mention , M. Fechner , T. Lasserre , T. A. Mueller , D. Lhuillier , M. Cribier , and A. Letourneau , Phys. Rev. D 83 , 073006 ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.83.073006 [11] 11 W. G. K. Schreckenbach , G. Colvin , and F. von Feilitzsch , Phys. Lett. 160B , 325 ( 1985 ). PYLBAJ 0370-2693 10.1016/0370-2693(85)91337-1 [12] 12 F. von Feilitzsch , A. Hahn , and K. Schreckenbach , Phys. Lett. 118B , 162 ( 1982 ). PYLBAJ 0370-2693 10.1016/0370-2693(82)90622-0 [13] 13 A. Hahn , K. Schreckenbach , W. Gelletly , F. von Feilitzsch , G. Colvin , and B. Krusche , Phys. Lett. B 218 , 365 ( 1989 ). PYLBAJ 0370-2693 10.1016/0370-2693(89)91598-0 [14] 14 P. Vogel , G. K. Schenter , F. M. Mann , and R. E. Schenter , Phys. Rev. C 24 , 1543 ( 1981 ). PRVCAN 0556-2813 10.1103/PhysRevC.24.1543 [15] 15 J. Kopp , M. Maltoni , and T. Schwetz , Phys. Rev. Lett. 107 , 091801 ( 2011 ). PRLTAO 0031-9007 10.1103/PhysRevLett.107.091801 [16] 16 J. Kopp , P. A. N. Machado , M. Maltoni , and T. Schwetz , J. High Energy Phys. 05 ( 2013 ) 050 . JHEPFG 1029-8479 10.1007/JHEP05(2013)050 [17] 17 C. Giunti , M. Laveder , Y. F. Li , and H. W. Long , Phys. Rev. D 88 , 073008 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.073008 [18] 18 C. Athanassopoulos ( LSND Collaboration ) , Phys. Rev. Lett. 81 , 1774 ( 1998 ). PRLTAO 0031-9007 10.1103/PhysRevLett.81.1774 [19] 19 A. Aguilar-Arevalo ( LSND Collaboration ) , Phys. Rev. D 64 , 112007 ( 2001 ). PRVDAQ 0556-2821 10.1103/PhysRevD.64.112007 [20] 20 A. A. Aguilar-Arevalo ( MiniBooNE Collaboration ) , Phys. Rev. Lett. 105 , 181801 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.105.181801 [21] 21 W. Hampel ( GALLEX Collaboration ) , Phys. Lett. B 420 , 114 ( 1998 ). PYLBAJ 0370-2693 10.1016/S0370-2693(97)01562-1 [22] 22 J. N. Abdurashitov ( SAGE Collaboration ) , Phys. Rev. C 80 , 015807 ( 2009 ). PRVCAN 0556-2813 10.1103/PhysRevC.80.015807 [23] 23 C. Giunti , Phys. Rev. D 96 , 033005 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.033005 [24] 24 M. Dentler , l. Hernández-Cabezudo , J. Kopp , M. Maltoni , and T. Schwetz , J. High Energy Phys. 11 ( 2017 ) 099 . JHEPFG 1029-8479 10.1007/JHEP11(2017)099 [25] 25 C. Giunti , X. P. Ji , M. Laveder , Y. F. Li , and B. R. Littlejohn , J. High Energy Phys. 10 ( 2017 ) 143 . JHEPFG 1029-8479 10.1007/JHEP10(2017)143 [26] 26 Y. Gebre , B. R. Littlejohn , and P. T. Surukuchi , Phys. Rev. D 97 , 013003 ( 2018 ). PRVDAQ 2470-0010 10.1103/PhysRevD.97.013003 [27] 27 F. P. An ( Daya Bay Collaboration ) , Phys. Rev. Lett. 118 , 251801 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.251801 [28] 28a F. P. An ( Daya Bay Collaboration ) , Phys. Rev. Lett. 116 , 061801 ( 2016 ); PRLTAO 0031-9007 10.1103/PhysRevLett.116.061801 28b F. P. An ( Daya Bay Collaboration ) Phys. Rev. Lett. 118 , 099902(E) ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.099902 [29] 29 F. P. An ( Daya Bay Collaboration ) , Chin. Phys. C 41 , 013002 ( 2017 ). CPCHCQ 1674-1137 10.1088/1674-1137/41/1/013002 [30] 30 F. P. An ( Daya Bay Collaboration ) , Nucl. Instrum. Methods Phys. Res., Sect. A 811 , 133 ( 2016 ). NIMAER 0168-9002 10.1016/j.nima.2015.11.144 [31] 31 F. P. An ( Daya Bay Collaboration ) , Phys. Rev. D 93 , 072011 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.072011 [32] 32 F. P. An ( Daya Bay Collaboration ) , Phys. Rev. D 95 , 072006 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.072006 [33] 33 P. Vogel and J. F. Beacom , Phys. Rev. D 60 , 053003 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.60.053003 [34] 34 K. A. Olive ( Particle Data Group ) , Chin. Phys. C 38 , 090001 ( 2014 ). CPCHCQ 1674-1137 10.1088/1674-1137/38/9/090001 [35] 35 X. B. Ma , W. L. Zhong , L. Z. Wang , Y. X. Chen , and J. Cao , Phys. Rev. C 88 , 014605 ( 2013 ). PRVCAN 0556-2813 10.1103/PhysRevC.88.014605 [36] 36 J. Liu , R. Carr , D. A. Dwyer , W. Q. Gu , G. S. Li , R. D. McKeown , X. Qian , R. H. M. Tsang , F. F. Wu , and C. Zhang , Nucl. Instrum. Methods Phys. Res., Sect. A 797 , 260 ( 2015 ). NIMAER 0168-9002 10.1016/j.nima.2015.07.003 [37] 37 J. Liu , Nucl. Instrum. Methods Phys. Res., Sect. A 750 , 19 ( 2014 ). NIMAER 0168-9002 10.1016/j.nima.2014.02.049 [38] 38 S. Agostinelli ( GEANT4 Collaboration ) , Nucl. Instrum. Methods Phys. Res., Sect. A 506 , 250 ( 2003 ). NIMAER 0168-9002 10.1016/S0168-9002(03)01368-8 [39] An error in neutron propagation was corrected. Details can be found in https://bugzilla-geant4.kek.jp/show_bug.cgi?id=1856 . We replaced the G4UHadronElasticProcess with G4HadronElasticProcess to correct the error, and the IBD selection efficiency increased by 0.3%. [40] 40 M. B. Chadwick , Nucl. Data Sheets 112 , 2887 ( 2011 ). NDTSBA 0090-3752 10.1016/j.nds.2011.11.002 [41] 41 L. Groshev , Nucl. Data Sheets, Sect. A 5 , 1 ( 1968 ). 10.1016/S0550-306X(68)80008-4 [42] 42 G. Boireau ( Nucifer Collaboration ) , Phys. Rev. D 93 , 112006 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.112006 [43] It is noteworthy that although the ILL-Vogel model agrees well with the data in total flux, its predicted energy spectrum (and that from the Huber-Mueller) is in strong tension with the experimental IBD antineutrino spectrum.
PY - 2019/9/9
Y1 - 2019/9/9
N2 - This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be (5.91±0.09)×10-43 cm2/fission with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes U235, U238, Pu239, and Pu241 are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be 0.952±0.014±0.023 (1.001±0.015±0.027) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model.
AB - This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be (5.91±0.09)×10-43 cm2/fission with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes U235, U238, Pu239, and Pu241 are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be 0.952±0.014±0.023 (1.001±0.015±0.027) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model.
UR - http://www.scopus.com/inward/record.url?scp=85072910710&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072910710&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.100.052004
DO - 10.1103/PhysRevD.100.052004
M3 - Article
AN - SCOPUS:85072910710
VL - 100
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 5
M1 - 052004
ER -