Improved image reconstruction for subspace-based spectroscopic imaging using non-quadratic regularization

Zheng Hua Wu, Fan Lam, Chao Ma, Zhi Pei Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A new MR spectroscopic imaging method, called SPICE (SPectroscopic Imaging by exploiting spatiospectral CorrElation), has been recently proposed to enable highresolution metabolic imaging with good SNR. A key problem within the SPICE framework is image reconstruction from a very noisy and sparsely sampled dataset. This paper addresses this problem by integrating the low-rank model used in SPICE reconstruction with a non-quadratic regularization. An efficient primal-dual based algorithm is described to solve the associated optimization problem. The proposed method has been validated using both simulation and phantom studies and is expected to enhance the unprecedented capability of SPICE for highresolution metabolic imaging.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2432-2435
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Improved image reconstruction for subspace-based spectroscopic imaging using non-quadratic regularization'. Together they form a unique fingerprint.

Cite this