Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions

Muyun Lihan, Emad Tajkhorshid

Research output: Contribution to journalArticlepeer-review

Abstract

Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized in silico solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human β2-adrenergic receptor (β2AR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.

Original languageEnglish (US)
Pages (from-to)4822-4834
Number of pages13
JournalJournal of Chemical Information and Modeling
Volume64
Issue number12
DOIs
StatePublished - Jun 24 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions'. Together they form a unique fingerprint.

Cite this