Improved Computational Extractors and Their Applications

Dakshita Khurana, Akshayaram Srinivasan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent exciting breakthroughs have achieved the first two-source extractors that operate in the low min-entropy regime. Unfortunately, these constructions suffer from non-negligible error, and reducing the error to negligible remains an important open problem. In recent work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a meaningful relaxation of this problem to the computational setting, in the presence of a common random string (CRS). In this relaxed model, their work built explicit two-source extractors for a restricted class of unbalanced sources with min-entropy nγ (for some constant γ ) and negligible error, under the sub-exponential DDH assumption. In this work, we investigate whether computational extractors in the CRS model be applied to more challenging environments. Specifically, we study network extractor protocols (Kalai et al., FOCS 2008) and extractors for adversarial sources (Chattopadhyay et al., STOC 2020) in the CRS model. We observe that these settings require extractors that work well for balanced sources, making the GKK results inapplicable. We remedy this situation by obtaining the following results, all of which are in the CRS model and assume the sub-exponential hardness of DDH. We obtain “optimal” computational two-source and non-malleable extractors for balanced sources: requiring both sources to have only poly-logarithmic min-entropy, and achieving negligible error. To obtain this result, we perform a tighter and arguably simpler analysis of the GKK extractor.We obtain a single-round network extractor protocol for poly-logarithmic min-entropy sources that tolerates an optimal number of adversarial corruptions. Prior work in the information-theoretic setting required sources with high min-entropy rates, and in the computational setting had round complexity that grew with the number of parties, required sources with linear min-entropy, and relied on exponential hardness (albeit without a CRS).We obtain an “optimal” adversarial source extractor for poly-logarithmic min-entropy sources, where the number of honest sources is only 2 and each corrupted source can depend on either one of the honest sources. Prior work in the information-theoretic setting had to assume a large number of honest sources.

Original languageEnglish (US)
Title of host publicationAdvances in Cryptology – CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Proceedings
EditorsTal Malkin, Chris Peikert
PublisherSpringer
Pages566-594
Number of pages29
ISBN (Print)9783030842512
DOIs
StatePublished - 2021
Event41st Annual International Cryptology Conference, CRYPTO 2021 - Virtual, Online
Duration: Aug 16 2021Aug 20 2021

Publication series

NameLecture Notes in Computer Science
Volume12827 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference41st Annual International Cryptology Conference, CRYPTO 2021
CityVirtual, Online
Period8/16/218/20/21

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Improved Computational Extractors and Their Applications'. Together they form a unique fingerprint.

Cite this