TY - GEN
T1 - Improved Computational Extractors and Their Applications
AU - Khurana, Dakshita
AU - Srinivasan, Akshayaram
N1 - Publisher Copyright:
© 2021, International Association for Cryptologic Research.
PY - 2021
Y1 - 2021
N2 - Recent exciting breakthroughs have achieved the first two-source extractors that operate in the low min-entropy regime. Unfortunately, these constructions suffer from non-negligible error, and reducing the error to negligible remains an important open problem. In recent work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a meaningful relaxation of this problem to the computational setting, in the presence of a common random string (CRS). In this relaxed model, their work built explicit two-source extractors for a restricted class of unbalanced sources with min-entropy nγ (for some constant γ ) and negligible error, under the sub-exponential DDH assumption. In this work, we investigate whether computational extractors in the CRS model be applied to more challenging environments. Specifically, we study network extractor protocols (Kalai et al., FOCS 2008) and extractors for adversarial sources (Chattopadhyay et al., STOC 2020) in the CRS model. We observe that these settings require extractors that work well for balanced sources, making the GKK results inapplicable. We remedy this situation by obtaining the following results, all of which are in the CRS model and assume the sub-exponential hardness of DDH. We obtain “optimal” computational two-source and non-malleable extractors for balanced sources: requiring both sources to have only poly-logarithmic min-entropy, and achieving negligible error. To obtain this result, we perform a tighter and arguably simpler analysis of the GKK extractor.We obtain a single-round network extractor protocol for poly-logarithmic min-entropy sources that tolerates an optimal number of adversarial corruptions. Prior work in the information-theoretic setting required sources with high min-entropy rates, and in the computational setting had round complexity that grew with the number of parties, required sources with linear min-entropy, and relied on exponential hardness (albeit without a CRS).We obtain an “optimal” adversarial source extractor for poly-logarithmic min-entropy sources, where the number of honest sources is only 2 and each corrupted source can depend on either one of the honest sources. Prior work in the information-theoretic setting had to assume a large number of honest sources.
AB - Recent exciting breakthroughs have achieved the first two-source extractors that operate in the low min-entropy regime. Unfortunately, these constructions suffer from non-negligible error, and reducing the error to negligible remains an important open problem. In recent work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a meaningful relaxation of this problem to the computational setting, in the presence of a common random string (CRS). In this relaxed model, their work built explicit two-source extractors for a restricted class of unbalanced sources with min-entropy nγ (for some constant γ ) and negligible error, under the sub-exponential DDH assumption. In this work, we investigate whether computational extractors in the CRS model be applied to more challenging environments. Specifically, we study network extractor protocols (Kalai et al., FOCS 2008) and extractors for adversarial sources (Chattopadhyay et al., STOC 2020) in the CRS model. We observe that these settings require extractors that work well for balanced sources, making the GKK results inapplicable. We remedy this situation by obtaining the following results, all of which are in the CRS model and assume the sub-exponential hardness of DDH. We obtain “optimal” computational two-source and non-malleable extractors for balanced sources: requiring both sources to have only poly-logarithmic min-entropy, and achieving negligible error. To obtain this result, we perform a tighter and arguably simpler analysis of the GKK extractor.We obtain a single-round network extractor protocol for poly-logarithmic min-entropy sources that tolerates an optimal number of adversarial corruptions. Prior work in the information-theoretic setting required sources with high min-entropy rates, and in the computational setting had round complexity that grew with the number of parties, required sources with linear min-entropy, and relied on exponential hardness (albeit without a CRS).We obtain an “optimal” adversarial source extractor for poly-logarithmic min-entropy sources, where the number of honest sources is only 2 and each corrupted source can depend on either one of the honest sources. Prior work in the information-theoretic setting had to assume a large number of honest sources.
UR - http://www.scopus.com/inward/record.url?scp=85115340521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115340521&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-84252-9_19
DO - 10.1007/978-3-030-84252-9_19
M3 - Conference contribution
AN - SCOPUS:85115340521
SN - 9783030842512
T3 - Lecture Notes in Computer Science
SP - 566
EP - 594
BT - Advances in Cryptology – CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Proceedings
A2 - Malkin, Tal
A2 - Peikert, Chris
PB - Springer
T2 - 41st Annual International Cryptology Conference, CRYPTO 2021
Y2 - 16 August 2021 through 20 August 2021
ER -