Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences for global climate change

Saber Miresmailli, Marcelo Zeri, Arthur R. Zangerl, Carl J. Bernacchi, May R. Berenbaum, Evan H. Delucia

Research output: Contribution to journalArticle


The introduction of new crops to agroecosystems can change the chemical composition of the atmosphere by altering the amount and type of plant-derived biogenic volatile organic compounds (BVOCs). BVOCs are produced by plants to aid in defense, pollination, and communication. Once released into the atmosphere, they have the ability to influence its chemical and physical properties. In this study, we compared BVOC emissions from three potential bioenergy crops and estimated their theoretical impacts on bioenergy agroecosystems. The crops chosen were miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), and an assemblage of prairie species (mix of ~28 species). The concentration of BVOCs was different within and above plant canopies. All crops produced higher levels of emissions at the upper canopy level. Miscanthus produced lower amounts of volatiles compared with other grasses. The chemical composition of volatiles differed significantly among plant communities. BVOCs from miscanthus were depleted in terpenoids relative to the other vegetation types. The carbon flux via BVOC emissions, calculated using the flux-gradient method, was significantly higher in the prairie assemblage compared with miscanthus and switchgrass. The BVOC carbon flux was approximately three orders of magnitude lower than the net fluxes of carbon measured over the same fields using eddy covariance systems. Extrapolation of our findings to the landscape scale leads us to suggest that the widespread adoption of bioenergy crops could potentially alter the composition of BVOCs in the atmosphere, thereby influencing its warming potential, the formation of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate that, among at least these three potential options for bioenergy production, miscanthus is likely to have lower impacts on atmospheric chemistry and biotic interactions mediated by these volatiles when miscanthus is planted on the landscape scale.

Original languageEnglish (US)
Pages (from-to)375-383
Number of pages9
JournalGCB Bioenergy
Issue number4
StatePublished - Jul 2013


  • Atmospheric chemistry
  • BVOC
  • Bioenergy
  • Global change

ASJC Scopus subject areas

  • Forestry
  • Renewable Energy, Sustainability and the Environment
  • Agronomy and Crop Science
  • Waste Management and Disposal

Fingerprint Dive into the research topics of 'Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences for global climate change'. Together they form a unique fingerprint.

  • Cite this