Abstract
Transplanted trees are exposed to numerous stresses from the time of harvest until establishment in the landscape. Although an individual stress factor may be the sole cause of plant death or decline, it is more likely a combination of stress factors cause reduced growth or death after planting. In an effort to isolate the stresses associated with three critical stages in the transplanting process (i.e., initial harvest, handling, and transport), 5-cm-caliper, balled-and-burlapped Acer rubrum L. 'Red Sunset' (red maple) and Acer platanoides L. 'Pond' (Norway maple) trees at three sites (Urbana, IL; Union, IL; and Manitowoc, WI) were subjected to three treatments: root-pruned, handled, and transported. Effects of water stress, root severance, and root-ball disruption on twig elongation and tree survival were measured for each treatment and compared with unaltered control trees. Twig elongation was greater in unaltered control trees when compared with root-pruned trees. In addition, root-pruned trees exhibited greater twig elongation when compared with either handled or transported trees suggesting that although initial root severance did affect growth, it was not as detrimental as lifting and handling. In addition, twig elongation was not different between handled and transported trees. Water potential measurements ranged from -0.2 to -2.0 MPa, suggesting water stress was not a critical factor during the time of transplanting. Similarly, root-ball soil moisture varied little between treatments over the course of transplanting. Results suggest rough handling before and after transport should be minimized in an effort to maximize growth and transplant success.
Original language | English (US) |
---|---|
Pages (from-to) | 53-58 |
Number of pages | 6 |
Journal | HortScience |
Volume | 44 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2009 |
Keywords
- Desiccation
- Shock
- Transplant shock
- Vibration
- Water stress
- Woody plant
ASJC Scopus subject areas
- Horticulture