Abstract
Rapid clearing engineered antibody fragments for immunoPET promise high sensitivity at early time points. Here, tumor targeting of anti-CD20 diabodies (scFv dimers) for detection of low-grade B-cell lymphomas were evaluated. In addition, the effect of linker length on oligomerization of the diabody was investigated. Four rituximab scFv variants in the VL-VH orientation with different linker lengths between the V domains (scFv-1, scFv-3, scFv-5, scFv-8), plus the scFv-5 with a C-terminal cysteine (Cys-Db) for site-specific modification were generated. The scFv-8 and Cys-Db were radioiodinated with 124I for PET imaging, and biodistribution of 131I-Cys-Db was carried out at 2, 4 10 and 20 h. The five anti-CD20 scFv variants were expressed as fully functional dimers. Shortening the linker to three or one residue did not produce higher order of multimers. Both 124I-labeled scFv-8 and Cys-Db exhibited similar tumor targeting at 8 h post injection, with significantly higher uptakes than in control tumors (P < 0.05). At 20 h, less than 1 ID/g of 131I-labeled Cys-Db was present in tumors and tissues. Specific tumor targeting and high contrast images were achieved with the anti-CD20 diabodies. These agents extend the repertoire of reagents that can potentially be used to improve detection of low-grade lymphomas.
Original language | English (US) |
---|---|
Pages (from-to) | 243-249 |
Number of pages | 7 |
Journal | Protein Engineering, Design and Selection |
Volume | 23 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2010 |
Externally published | Yes |
Keywords
- CD20
- PET
- lymphoma model
- scFv
ASJC Scopus subject areas
- Medicine(all)