Imaging the polymerization of multivalent nanoparticles in solution

Juyeong Kim, Zihao Ou, Matthew R. Jones, Xiaohui Song, Qian Chen

Research output: Contribution to journalArticlepeer-review

Abstract

Numerous mechanisms have been studied for chemical reactions to provide quantitative predictions on how atoms spatially arrange into molecules. In nanoscale colloidal systems, however, less is known about the physical rules governing their spatial organization, i.e., self-assembly, into functional materials. Here, we monitor real-time self-assembly dynamics at the single nanoparticle level, which reveal marked similarities to foundational principles of polymerization. Specifically, using the prototypical system of gold triangular nanoprisms, we show that colloidal self-assembly is analogous to polymerization in three aspects: ensemble growth statistics following models for step-growth polymerization, with nanoparticles as linkable "monomers"; bond angles determined by directional internanoparticle interactions; and product topology determined by the valency of monomeric units. Liquid-phase transmission electron microscopy imaging and theoretical modeling elucidate the nanometer-scale mechanisms for these polymer-like phenomena in nanoparticle systems. The results establish a quantitative conceptual framework for self-assembly dynamics that can aid in designing future nanoparticle-based materials.

Original languageEnglish (US)
Article number761
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Imaging the polymerization of multivalent nanoparticles in solution'. Together they form a unique fingerprint.

Cite this