Imaging Special Nuclear Material using a Handheld Dual Particle Imager

William M. Steinberger, Marc L. Ruch, Nathan Giha, Angela Di Fulvio, Peter Marleau, Shaun D. Clarke, Sara A. Pozzi

Research output: Contribution to journalArticlepeer-review

Abstract

A compact radiation imaging system capable of detecting, localizing, and characterizing special nuclear material (e.g. highly-enriched uranium, plutonium…) would be useful for national security missions involving inspection, emergency response, or war-fighters. Previously-designed radiation imaging systems have been large and bulky with significant portions of volume occupied by photomultiplier tubes (PMTs). The prototype imaging system presented here uses silicon photomultipliers (SiPMs) in place of PMTs because SiPMs are much more compact and operate at low power and voltage. The SiPMs are coupled to the ends of eight stilbene organic scintillators, which have an overall volume of 5.74 × 5.74 × 7.11 cm3. The prototype dual-particle imager’s capabilities were evaluated by performing measurements with a 252Cf source, a sphere of 4.5 kg of alpha-phase weapons-grade plutonium known as the BeRP ball, a 6 kg sphere of neptunium, and a canister of 3.4 kg of plutonium oxide (7% 240Pu and 93% 239Pu). These measurements demonstrate neutron spectroscopic capabilities, a neutron image resolution for a Watt spectrum of 9.65 ± 0.94° in the azimuthal direction and 22.59 ± 5.81° in the altitude direction, imaging of gamma rays using organic scintillators, and imaging of multiple sources in the same field of view.

Original languageEnglish (US)
Article number1855
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Imaging Special Nuclear Material using a Handheld Dual Particle Imager'. Together they form a unique fingerprint.

Cite this