Image Super-Resolution via Dual-State Recurrent Networks

Wei Han, Shiyu Chang, Ding Liu, Mo Yu, Michael Witbrock, Thomas S. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Advances in image super-resolution (SR) have recently benefited significantly from rapid developments in deep neural networks. Inspired by these recent discoveries, we note that many state-of-the-art deep SR architectures can be reformulated as a single-state recurrent neural network (RNN) with finite unfoldings. In this paper, we explore new structures for SR based on this compact RNN view, leading us to a dual-state design, the Dual-State Recurrent Network (DSRN). Compared to its single-state counterparts that operate at a fixed spatial resolution, DSRN exploits both low-resolution (LR) and high-resolution (HR) signals jointly. Recurrent signals are exchanged between these states in both directions (both LR to HR and HR to LR) via delayed feedback. Extensive quantitative and qualitative evaluations on benchmark datasets and on a recent challenge demonstrate that the proposed DSRN performs favorably against state-of-the-art algorithms in terms of both memory consumption and predictive accuracy. The code for our method is publicly available1.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages1654-1663
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - Dec 14 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
CountryUnited States
CitySalt Lake City
Period6/18/186/22/18

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Image Super-Resolution via Dual-State Recurrent Networks'. Together they form a unique fingerprint.

Cite this