TY - GEN
T1 - Image Reconstruction in Phase-Contrast CT with Shortened Scans
AU - Zhang, Zheng
AU - Chen, Buxin
AU - Xia, Dan
AU - Sidky, Emil Y.
AU - Anastasio, Mark
AU - Pan, Xiaochuan
N1 - Funding Information:
This work was supported in part by NIH Grant Nos. R01-EB026282, R01-EB023968, and 1R21CA263660-01A1. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2022 SPIE.
PY - 2022
Y1 - 2022
N2 - Phase-contrast CT (PCCT) is an emerging tool that has found numerous applications, including applications to preclinical imaging. There remains a need for reducing the imaging time in current PCCT. One approach to reducing imaging time is to reduce the scanning angular range in PCCT. However, accurate image reconstruction from data collected over a limited angular range (LAR) is challenging because it poses a problem of accurate inversion of the PCCT imaging model that can be highly ill-conditioned in LAR scans. In this work, we conduct an investigation of accurate image reconstruction through inverting the imaging model for LAR scanning configurations in propagation-based (PB) PCCT. We have developed a directional-total-variation (DTV) algorithm for image reconstruction from knowledge of the discrete X-ray transform (DXT) over a LAR for CT imaging. Observing the mathematical similarity between the DXT in CT and the imaging model in PB-PCCT, we develop and tailor the DTV algorithm for image reconstruction from LAR data in PB-PCCT. Results of our study show that the tailored DTV algorithm can yield image reconstruction with reduced LAR artifacts that can be observed otherwise in images reconstructed by use of the existing algorithm in PB-PCCT imaging. For a given LAR, it can be divided into sub arcs of LARs. We also investigate a scanning configuration with two orthogonal arcs of LARs separated by 90◦, and observe that the two-orthogonal-arc scanning configuration may allow image reconstruction more accurately than does a single-arc scanning configuration even though the total angular ranges in both scanning configurations are identical. While boundary images can be reconstructed from data, we develop the DTV algorithm for reconstruction of the image, i.e., the refractive index distribution, instead of its boundary image from data in PB-PCCT. Once the image is obtained, the Laplacian operator can be applied to it for yielding its boundary image.
AB - Phase-contrast CT (PCCT) is an emerging tool that has found numerous applications, including applications to preclinical imaging. There remains a need for reducing the imaging time in current PCCT. One approach to reducing imaging time is to reduce the scanning angular range in PCCT. However, accurate image reconstruction from data collected over a limited angular range (LAR) is challenging because it poses a problem of accurate inversion of the PCCT imaging model that can be highly ill-conditioned in LAR scans. In this work, we conduct an investigation of accurate image reconstruction through inverting the imaging model for LAR scanning configurations in propagation-based (PB) PCCT. We have developed a directional-total-variation (DTV) algorithm for image reconstruction from knowledge of the discrete X-ray transform (DXT) over a LAR for CT imaging. Observing the mathematical similarity between the DXT in CT and the imaging model in PB-PCCT, we develop and tailor the DTV algorithm for image reconstruction from LAR data in PB-PCCT. Results of our study show that the tailored DTV algorithm can yield image reconstruction with reduced LAR artifacts that can be observed otherwise in images reconstructed by use of the existing algorithm in PB-PCCT imaging. For a given LAR, it can be divided into sub arcs of LARs. We also investigate a scanning configuration with two orthogonal arcs of LARs separated by 90◦, and observe that the two-orthogonal-arc scanning configuration may allow image reconstruction more accurately than does a single-arc scanning configuration even though the total angular ranges in both scanning configurations are identical. While boundary images can be reconstructed from data, we develop the DTV algorithm for reconstruction of the image, i.e., the refractive index distribution, instead of its boundary image from data in PB-PCCT. Once the image is obtained, the Laplacian operator can be applied to it for yielding its boundary image.
KW - directional total variation
KW - limited-angular range (LAR)
KW - phase contrast CT (PCCT)
KW - primal-dual algorithm
UR - http://www.scopus.com/inward/record.url?scp=85141806420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141806420&partnerID=8YFLogxK
U2 - 10.1117/12.2646432
DO - 10.1117/12.2646432
M3 - Conference contribution
AN - SCOPUS:85141806420
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - 7th International Conference on Image Formation in X-Ray Computed Tomography
A2 - Stayman, Joseph Webster
PB - SPIE
T2 - 7th International Conference on Image Formation in X-Ray Computed Tomography
Y2 - 12 June 2022 through 16 June 2022
ER -