Image reconstruction in optoacoustic tomography accounting for frequency-dependent attenuation

Patrick J. La Rivière, Zhang Jin, Mark A. Anastasio

Research output: Chapter in Book/Report/Conference proceedingConference contribution


In this work, we show how to incorporate attenuation into the optoacoustic tomography (OAT) imaging equation and develop a strategy for compensating for this attenuation during image reconstruction. In OAT, one exposes a sample to pulses of electromagnetic radiation that cause small amounts of heating in the specimen. The heating engenders thermal expansion which, in turn, gives rise to acoustic waves. The resulting acoustic pressure signal is generally measured by transducers arrayed around the object, and these data may be used to reconstruct images of the original electromagnetic absorption. Frequency-dependent absorption of the acoustic waves can lead to blurring and distortion in reconstructed images. We show that in the temporal frequency domain, the optoacoustic wave equation incorporating attenuation is equivalent to the inhomogeneous Helmholtz equation with a complex wave number. While some work has been done in other fields on directly solving Helmholtz equations with complex wave numbers, these are generally computationally intensive numerical approaches. We pursue a different approach, deriving an integral equation that relates the temporal optoacoustic signal at a given transducer location in the presence of attenuation to the ideal signal that would have been obtained in the absence of attenuation. This equation is readily discretized and the resulting linear system of equations involves a matrix that need only be inverted once, at which point the inverse can be used to correct all of the measured time signals prior to reconstruction by conventional methods.

Original languageEnglish (US)
Title of host publication2005 IEEE Nuclear Science Symposium Conference Record -Nuclear Science Symposium and Medical Imaging Conference
Number of pages5
StatePublished - Dec 1 2005
Externally publishedYes
EventNuclear Science Symposium Conference Record, 2005 IEEE - , Puerto Rico
Duration: Oct 23 2005Oct 29 2005

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863


OtherNuclear Science Symposium Conference Record, 2005 IEEE
CountryPuerto Rico

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Image reconstruction in optoacoustic tomography accounting for frequency-dependent attenuation'. Together they form a unique fingerprint.

Cite this