@inproceedings{9557d1801b984a3888b1bdd0be6bd656,
title = "Identifying malicious botnet traffic using logistic regression",
abstract = "An important source of cyber-attacks is malware, which proliferates in different forms such as botnets. The botnet malware typically looks for vulnerable devices across the Internet, rather than targeting specific individuals, companies or industries. It attempts to infect as many connected devices as possible, using their resources for automated tasks that may cause significant economic and social harm while being hidden to the user and device. Thus, it becomes very difficult to detect such activity. A considerable amount of research has been conducted to detect and prevent botnet infestation. In this paper, we attempt to create a foundation for an anomaly-based intrusion detection system using a statistical learning method to improve network security and reduce human involvement in botnet detection. We focus on identifying the best features to detect botnet activity within network traffic using a lightweight logistic regression model. The network traffic is processed by Bro, a popular network monitoring framework which provides aggregate statistics about the packets exchanged between a source and destination over a certain time interval. These statistics serve as features to a logistic regression model responsible for classifying malicious and benign traffic. Our model is easy to implement and simple to interpret. We characterized and modeled 8 different botnet families separately and as a mixed dataset. Finally, we measured the performance of our model on multiple parameters using F1 score, accuracy and Area Under Curve (AUC).",
keywords = "Botnet Detection, Cyber Security, Logistic Regression, Machine Learning",
author = "Rohan Bapat and Abhijith Mandya and Xinyang Liu and Brendan Abraham and Brown, {Donald E.} and Hyojung Kang and Malathi Veeraraghavan",
note = "Publisher Copyright: {\textcopyright} 2018 IEEE.; 2018 Systems and Information Engineering Design Symposium, SIEDS 2018 ; Conference date: 27-04-2018",
year = "2018",
month = jun,
day = "6",
doi = "10.1109/SIEDS.2018.8374749",
language = "English (US)",
series = "2018 Systems and Information Engineering Design Symposium, SIEDS 2018",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "266--271",
booktitle = "2018 Systems and Information Engineering Design Symposium, SIEDS 2018",
address = "United States",
}