TY - JOUR
T1 - Identifying common methods used by drug interaction experts for finding evidence about potential drug-drug interactions
T2 - Web-based survey
AU - Grizzle, Amy J.
AU - Horn, John
AU - Collins, Carol
AU - Schneider, Jodi
AU - Malone, Daniel C.
AU - Stottlemyer, Britney
AU - Boyce, Richard David
N1 - Publisher Copyright:
© Amy J Grizzle, John Horn, Carol Collins, Jodi Schneider, Daniel C Malone, Britney Stottlemyer, Richard David Boyce.
PY - 2019/1
Y1 - 2019/1
N2 - Background: Preventing drug interactions is an important goal to maximize patient benefit from medications. Summarizing potential drug-drug interactions (PDDIs) for clinical decision support is challenging, and there is no single repository for PDDI evidence. Additionally, inconsistencies across compendia and other sources have been well documented. Standard search strategies for complete and current evidence about PDDIs have not heretofore been developed or validated. Objective: This study aimed to identify common methods for conducting PDDI literature searches used by experts who routinely evaluate such evidence. Methods: We invited a convenience sample of 70 drug information experts, including compendia editors, knowledge-base vendors, and clinicians, via emails to complete a survey on identifying PDDI evidence. We created a Web-based survey that included questions regarding the (1) development and conduct of searches; (2) resources used, for example, databases, compendia, search engines, etc; (3) types of keywords used to search for the specific PDDI information; (4) study types included and excluded in searches; and (5) search terms used. Search strategy questions focused on 6 topics of the PDDI information—(1) that a PDDI exists; (2) seriousness; (3) clinical consequences; (4) management options; (5) mechanism; and (6) health outcomes. Results: Twenty participants (response rate, 20/70, 29%) completed the survey. The majority (17/20, 85%) were drug information specialists, drug interaction researchers, compendia editors, or clinical pharmacists, with 60% (12/20) having >10 years’ experience. Over half (11/20, 55%) worked for clinical solutions vendors or knowledge-base vendors. Most participants developed (18/20, 90%) and conducted (19/20, 95%) search strategies without librarian assistance. PubMed (20/20, 100%) and Google Scholar (11/20, 55%) were most commonly searched for papers, followed by Google Web Search (7/20, 35%) and EMBASE (3/20, 15%). No respondents reported using Scopus. A variety of subscription and open-access databases were used, most commonly Lexicomp (9/20, 45%), Micromedex (8/20, 40%), Drugs@FDA (17/20, 85%), and DailyMed (13/20, 65%). Facts and Comparisons was the most commonly used compendia (8/20, 40%). Across the 6 attributes of interest, generic drug name was the most common keyword used. Respondents reported using more types of keywords when searching to identify the existence of PDDIs and determine their mechanism than when searching for the other 4 attributes (seriousness, consequences, management, and health outcomes). Regarding the types of evidence useful for evaluating a PDDI, clinical trials, case reports, and systematic reviews were considered relevant, while animal and in vitro data studies were not. Conclusions: This study suggests that drug interaction experts use various keyword strategies and various database and Web resources depending on the PDDI evidence they are seeking. Greater automation and standardization across search strategies could improve one’s ability to identify PDDI evidence. Hence, future research focused on enhancing the existing search tools and designing recommended standards is needed.
AB - Background: Preventing drug interactions is an important goal to maximize patient benefit from medications. Summarizing potential drug-drug interactions (PDDIs) for clinical decision support is challenging, and there is no single repository for PDDI evidence. Additionally, inconsistencies across compendia and other sources have been well documented. Standard search strategies for complete and current evidence about PDDIs have not heretofore been developed or validated. Objective: This study aimed to identify common methods for conducting PDDI literature searches used by experts who routinely evaluate such evidence. Methods: We invited a convenience sample of 70 drug information experts, including compendia editors, knowledge-base vendors, and clinicians, via emails to complete a survey on identifying PDDI evidence. We created a Web-based survey that included questions regarding the (1) development and conduct of searches; (2) resources used, for example, databases, compendia, search engines, etc; (3) types of keywords used to search for the specific PDDI information; (4) study types included and excluded in searches; and (5) search terms used. Search strategy questions focused on 6 topics of the PDDI information—(1) that a PDDI exists; (2) seriousness; (3) clinical consequences; (4) management options; (5) mechanism; and (6) health outcomes. Results: Twenty participants (response rate, 20/70, 29%) completed the survey. The majority (17/20, 85%) were drug information specialists, drug interaction researchers, compendia editors, or clinical pharmacists, with 60% (12/20) having >10 years’ experience. Over half (11/20, 55%) worked for clinical solutions vendors or knowledge-base vendors. Most participants developed (18/20, 90%) and conducted (19/20, 95%) search strategies without librarian assistance. PubMed (20/20, 100%) and Google Scholar (11/20, 55%) were most commonly searched for papers, followed by Google Web Search (7/20, 35%) and EMBASE (3/20, 15%). No respondents reported using Scopus. A variety of subscription and open-access databases were used, most commonly Lexicomp (9/20, 45%), Micromedex (8/20, 40%), Drugs@FDA (17/20, 85%), and DailyMed (13/20, 65%). Facts and Comparisons was the most commonly used compendia (8/20, 40%). Across the 6 attributes of interest, generic drug name was the most common keyword used. Respondents reported using more types of keywords when searching to identify the existence of PDDIs and determine their mechanism than when searching for the other 4 attributes (seriousness, consequences, management, and health outcomes). Regarding the types of evidence useful for evaluating a PDDI, clinical trials, case reports, and systematic reviews were considered relevant, while animal and in vitro data studies were not. Conclusions: This study suggests that drug interaction experts use various keyword strategies and various database and Web resources depending on the PDDI evidence they are seeking. Greater automation and standardization across search strategies could improve one’s ability to identify PDDI evidence. Hence, future research focused on enhancing the existing search tools and designing recommended standards is needed.
KW - Drug interaction experts
KW - Drug interactions
KW - Potential drug-drug interactions
KW - Surveys
UR - http://www.scopus.com/inward/record.url?scp=85059502500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059502500&partnerID=8YFLogxK
U2 - 10.2196/11182
DO - 10.2196/11182
M3 - Review article
C2 - 30609981
AN - SCOPUS:85059502500
SN - 1438-8871
VL - 21
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
IS - 1
M1 - e11182
ER -