Identifying candidate disease genes using a trace norm constrained bipartite raking model

Cheng H. Lee, Oluwasanmi Koyejo, Joydeep Ghosh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Computational prediction of genes that play roles in human diseases remains an important but challenging task. In this work, we formulate candidate gene prediction as a bipartite ranking problem combining a task-wise ordered observation model with a latent multitask regression function using the matrix-variate Gaussian process (MV-GP). We then use a trace-norm constrained variational inference approach to obtain the bipartite ranking model variables and the parameters of the underlying multitask regression model. We use this model to predict candidate genes from two gene-disease association data sets and show that our model outperforms current state-of-the-art methods. Finally, we demonstrate the practical utility of our method by successfully recovering well characterized gene-disease associations hidden in our training data.

Original languageEnglish (US)
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages3459-3462
Number of pages4
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Identifying candidate disease genes using a trace norm constrained bipartite raking model'. Together they form a unique fingerprint.

Cite this