TY - JOUR
T1 - Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter
AU - Huang, Zhijian
AU - Tajkhorshid, Emad
N1 - Funding Information:
This study was supported by the National Institutes of Health (grant Nos. R01-GM086749, R01-GM067887, and P41-RR05969). The simulations were performed using the TeraGrid resources (grant No. MCA06N060).
PY - 2010/9/8
Y1 - 2010/9/8
N2 - The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn 310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure-showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.
AB - The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn 310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure-showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.
UR - http://www.scopus.com/inward/record.url?scp=77956527543&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956527543&partnerID=8YFLogxK
U2 - 10.1016/j.bpj.2010.06.052
DO - 10.1016/j.bpj.2010.06.052
M3 - Article
C2 - 20816053
AN - SCOPUS:77956527543
SN - 0006-3495
VL - 99
SP - 1416
EP - 1425
JO - Biophysical Journal
JF - Biophysical Journal
IS - 5
ER -