TY - JOUR
T1 - Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems
AU - Mathis, Alexander
AU - Depaquit, Jérôme
AU - Dvořák, Vit
AU - Tuten, Holly
AU - Bañuls, Anne Laure
AU - Halada, Petr
AU - Zapata, Sonia
AU - Lehrter, Véronique
AU - Hlavačková, Kristýna
AU - Prudhomme, Jorian
AU - Volf, Petr
AU - Sereno, Denis
AU - Kaufmann, Christian
AU - Pflüger, Valentin
AU - Schaffner, Francis
N1 - We thank Jeannine Hauri for excellent technical support, and greatly acknowledge the Swiss Food Safety and Veterinary Office as sponsor of the Swiss National Centre for Vector Entomology. We also thank Bernard Pesson and Mohammad Akhoundi for providing us many specimens. The work of AM, VD, HT, CK and FS was done under the frame of EurNegVec COST Action TD1303. The work of VD, PH, PV and KH was supported by the Czech Science Foundation (project GACR 15-04329S). The work of PH was also supported by the Institutional Research Project of the Institute of Microbiology (RVO61388971). The work of ALB, JP and DS has been supported by the EDENext project (reference nr. EDENext329). We are also grateful to the PhDB group of Montpellier for the field collection.
PY - 2015/5/10
Y1 - 2015/5/10
N2 - Background: Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. Methods: We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. Results: Identical biomarker mass patterns ('superspectra') were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively. Conclusions: A centralized high-quality database (created by expert taxonomists and experienced users of mass spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown in the present work, spectra obtained from different specimens with different instruments can be analysed using a centralized database, which should be available in the near future via an online platform in a cost-efficient manner.
AB - Background: Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. Methods: We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. Results: Identical biomarker mass patterns ('superspectra') were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively. Conclusions: A centralized high-quality database (created by expert taxonomists and experienced users of mass spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown in the present work, spectra obtained from different specimens with different instruments can be analysed using a centralized database, which should be available in the near future via an online platform in a cost-efficient manner.
KW - Arthropod identification
KW - Bruker
KW - Centralized reference database
KW - Cross reference
KW - Phlebotominae
KW - Protein Profiling
KW - Shimadzu
KW - Spectra processing
KW - Validation
UR - http://www.scopus.com/inward/record.url?scp=84930673439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930673439&partnerID=8YFLogxK
U2 - 10.1186/s13071-015-0878-2
DO - 10.1186/s13071-015-0878-2
M3 - Article
C2 - 25957576
AN - SCOPUS:84930673439
SN - 1756-3305
VL - 8
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 266
ER -