Identification of Erwinia amylovora genes induced during infection of immature pear tissue

Youfu Zhao, Sara E. Blumer, George W. Sundin

Research output: Contribution to journalArticlepeer-review

Abstract

The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoCEA, and membrane-bound lytic murein transglycosylase MltEEA. An insertional mutation within hopPtoCEA did not result in reduced virulence; however, an mltEEA knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.

Original languageEnglish (US)
Pages (from-to)8088-8103
Number of pages16
JournalJournal of bacteriology
Volume187
Issue number23
DOIs
StatePublished - Dec 2005
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Identification of Erwinia amylovora genes induced during infection of immature pear tissue'. Together they form a unique fingerprint.

Cite this