Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase

Eleonore Von Castelmur, Johan Strümpfer, Barbara Franke, Julijus Bogomolovas, Sonia Barbieri, Hiroshi Qadota, Petr V. Konarev, Dmitri I. Svergun, Siegfried Labeit, Guy M. Benian, Klaus Schulten, Olga Mayans

Research output: Contribution to journalArticlepeer-review

Abstract

Titin-like kinases are an important class of cytoskeletal kinases that intervene in the response ofmuscle to mechanical stimulation, being central to myofibril homeostasis and development. These kinases exist in autoinhibited states and, allegedly, become activated during muscle activity by the elastic unfolding of a C-terminal regulatory segment (CRD). However, this mechano-activation model remains controversial. Here we explore the structural, catalytic, and tensile properties of the multidomain kinase region of Caenorhabditis elegans twitchin (Fn 31-Nlinker-kinase-CRD-Ig 26) using X-ray crystallography, small angle X-ray scattering, molecular dynamics simulations, and catalytic assays. This work uncovers the existence of an inhibitory segment that flanks the kinase N-terminally (N-linker) and that acts synergistically with the canonical CRD tail to silence catalysis. The N-linker region has high mechanical lability and acts as the primary stretch-sensor in twitchin kinase, while the CRD is poorly responsive to pulling forces. This poor response suggests that the CRD is not a generic mechanosensor in this kinase family. Instead, the CRD is shown here to be permissive to catalysis and might protect the kinase active site against mechanical damage. Thus, we put forward a regulatory modelwhere kinase inhibition results fromthe combined action of both N- and C-terminal tails, but only the N-terminal extension undergoes mechanical removal, thereby affording partial activation. Further, we compare invertebrate and vertebrate titin-like kinases and identify variations in the regulatory segments that suggest a mechanical speciation of these kinase classes.

Original languageEnglish (US)
Pages (from-to)13608-13613
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume109
Issue number34
DOIs
StatePublished - Aug 21 2012

Keywords

  • Molecular mechanobiology
  • Phospho-transfer catalysis
  • Steered molecular dynamics simulations

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase'. Together they form a unique fingerprint.

Cite this