Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and Their Relationship with Markers of Type 2 Diabetes and Bitterness

Subhiksha Chandrasekaran, Diego Luna-Vital, Elvira Gonzalez de Mejia

Research output: Contribution to journalArticlepeer-review

Abstract

The chickpea (Cicer arietinum L.) is one of the most important pulses worldwide. The objective was to identify, compare and evaluate peptides from chickpea hydrolysates produced by two enzymatic treatments. The antidiabetic potential and bitterness of the peptides and induction of bitter receptors were identified in silico. Proteins were isolated from the Kabuli variety. Peptides were produced from the proteins using a simulated digestive system (pepsin/pancreatin, 1:50 Enzyme/Protein, E/P), and these peptides were compared with those produced via bromelain hydrolysis (1:50 E/P). The protein profiles, sequences and characteristics of the peptides were evaluated. The biochemical inhibition and molecular docking of dipeptidyl peptidase-IV (DPP-IV), α-amylase and α-glucosidase were also studied. The molecular docking identified peptides from enzymatic hydrolysis as inhibitors of DPP-IV. The high hydrophobicity of the peptides indicated the potential for bitterness. There was no correlation between peptide length and DPP-IV binding. Peptides sequenced from the pepsin/pancreatin hydrolysates, PHPATSGGGL and YVDGSGTPLT, had greater affinity for the DPP-IV catalytic site than the peptides from the bromelain hydrolysates. These results are in agreement with their biochemical inhibition, when considering the inhibition of sitagliptin (54.3 µg/mL) as a standard. The bitter receptors hTAS2R38, hTAS2R5, hTAS2R7 and hTAS2R14 were stimulated by most sequences, which could be beneficial in the treatment of type 2 diabetes. Chickpea hydrolysates could be utilized as functional ingredients to be included in the diet for the prevention of diabetes.
Original languageEnglish (US)
Article number3843
Pages (from-to)1-16
Number of pages16
JournalNutrients
Volume12
Issue number12
DOIs
StatePublished - Dec 16 2020

Keywords

  • α-amylase
  • type 2 diabetes mellitus
  • protein hydrolysates
  • peptides
  • DPP-IV
  • chickpea
  • bromelain
  • bitterness
  • Bitterness
  • Peptides
  • Protein hydrolysates
  • Chickpea
  • Type 2 diabetes mellitus
  • Bromelain

ASJC Scopus subject areas

  • Food Science
  • Nutrition and Dietetics

Fingerprint Dive into the research topics of 'Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and Their Relationship with Markers of Type 2 Diabetes and Bitterness'. Together they form a unique fingerprint.

Cite this