Ideals, determinants, and straightening: proving and using lower bounds for polynomial ideals

Robert Andrews, Michael A. Forbes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We show that any nonzero polynomial in the ideal generated by the r × r minors of an n × n matrix X can be used to efficiently approximate the determinant. Specifically, for any nonzero polynomial f in this ideal, we construct a small depth-three f-oracle circuit that approximates the (r1/3) × (r1/3) determinant in the sense of border complexity. For many classes of algebraic circuits, this implies that every nonzero polynomial in the ideal generated by r × r minors is at least as hard to approximately compute as the (r1/3) × (r1/3) determinant. We also prove an analogous result for the Pfaffian of a 2n × 2n skew-symmetric matrix and the ideal generated by Pfaffians of 2r × 2r principal submatrices. This answers a recent question of Grochow about complexity in polynomial ideals in the setting of border complexity. Leveraging connections between the complexity of polynomial ideals and other questions in algebraic complexity, our results provide a generic recipe that allows lower bounds for the determinant to be applied to other problems in algebraic complexity. We give several such applications, two of which are highlighted below. We prove new lower bounds for the Ideal Proof System of Grochow and Pitassi. Specifically, we give super-polynomial lower bounds for refutations computed by low-depth circuits. This extends the recent breakthrough low-depth circuit lower bounds of Limaye et al. to the setting of proof complexity. Moreover, we show that for many natural circuit classes, the approximative proof complexity of our hard instance is governed by the approximative circuit complexity of the determinant. We also construct new hitting set generators for the closure of low-depth circuits. For any ϵ > 0, we construct generators with seed length O(nϵ) that hit n-variate low-depth circuits. Our generators attain a near-optimal tradeoff between their seed length and degree, and are computable by low-depth circuits of near-linear size (with respect to the size of their output). This matches the seed length of the generators recently obtained by Limaye et al., but improves on the degree and circuit complexity of the generator.

Original languageEnglish (US)
Title of host publicationSTOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
EditorsStefano Leonardi, Anupam Gupta
PublisherAssociation for Computing Machinery
Pages389-402
Number of pages14
ISBN (Electronic)9781450392648
DOIs
StatePublished - Sep 6 2022
Externally publishedYes
Event54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 - Rome, Italy
Duration: Jun 20 2022Jun 24 2022

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022
Country/TerritoryItaly
CityRome
Period6/20/226/24/22

Keywords

  • Determinantal ideals
  • Ideal Proof System
  • polynomial identity testing
  • straightening law

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Ideals, determinants, and straightening: proving and using lower bounds for polynomial ideals'. Together they form a unique fingerprint.

Cite this