Ice: A strongly correlated proton system

A. H. Castro Neto, P. Pujol, Eduardo Fradkin

Research output: Contribution to journalArticlepeer-review

Abstract

We discuss the problem of proton motion in hydrogen bond materials with special focus on ice. We show that phenomenological models proposed in the past for the study of ice can be recast in terms of microscopic models in close relationship to the ones used to study the physics of Mott-Hubbard insulators. We discuss the physics of the paramagnetic phase of ice at 1/4 filling (neutral ice) and its mapping to a transverse field Ising model and also to a gauge theory in two and three dimensions. We show that H3+ O and HO- ions can be either in a confined or deconfined phase. We obtain the phase diagram of the problem as a function of temperature T and proton hopping energy t and find that there are two phases: an ordered insulating phase which results from an order-by-disorder mechanism induced by quantum fluctuations, and a disordered incoherent metallic phase (or plasma). We also discuss the problem of decoherence in the proton motion introduced by the lattice vibrations (phonons) and its effect on the phase diagram. Finally, we suggest that the transition from ice Ih to ice XI observed experimentally in doped ice is the confining-deconfining transition of our phase diagram.

Original languageEnglish (US)
Article number024302
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume74
Issue number2
DOIs
StatePublished - 2006

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Ice: A strongly correlated proton system'. Together they form a unique fingerprint.

Cite this