Hypergraph Connectivity Augmentation in Strongly Polynomial Time

Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Shubhang Kulkarni

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider hypergraph network design problems where the goal is to construct a hypergraph that satisfies certain connectivity requirements. For graph network design problems where the goal is to construct a graph that satisfies certain connectivity requirements, the number of edges in every feasible solution is at most quadratic in the number of vertices. In contrast, for hypergraph network design problems, we might have feasible solutions in which the number of hyperedges is exponential in the number of vertices. This presents an additional technical challenge in hypergraph network design problems compared to graph network design problems: in order to solve the problem in polynomial time, we first need to show that there exists a feasible solution in which the number of hyperedges is polynomial in the input size. The central theme of this work is to overcome this additional technical challenge for certain hypergraph network design problems. We show that these hypergraph network design problems admit solutions in which the number of hyperedges is polynomial in the number of vertices and moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest pseudo-polynomial run-time for these problems. As applications of our results, we derive the first strongly polynomial time algorithms for (i) degree-specified hypergraph connectivity augmentation using hyperedges and (ii) degree-specified hypergraph node-to-area connectivity augmentation using hyperedges.

Original languageEnglish (US)
Title of host publication32nd Annual European Symposium on Algorithms, ESA 2024
EditorsTimothy Chan, Johannes Fischer, John Iacono, Grzegorz Herman
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773386
DOIs
StatePublished - Sep 2024
Event32nd Annual European Symposium on Algorithms, ESA 2024 - London, United Kingdom
Duration: Sep 2 2024Sep 4 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume308
ISSN (Print)1868-8969

Conference

Conference32nd Annual European Symposium on Algorithms, ESA 2024
Country/TerritoryUnited Kingdom
CityLondon
Period9/2/249/4/24

Keywords

  • Combinatorial Optimization
  • Hypergraph Connectivity
  • Hypergraphs
  • Submodular Functions

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Hypergraph Connectivity Augmentation in Strongly Polynomial Time'. Together they form a unique fingerprint.

Cite this