Hydrothermal Decomposition of Cobalt Hydroxide in Saturated Water Vapor

Arpit Dwivedi, Brajendra K. Sharma, Nandakishore Rajagopalan, Sanjiv Sinha

Research output: Contribution to journalArticlepeer-review

Abstract

The hydrothermal decomposition of cobalt hydroxide is of importance in understanding corrosion in nuclear reactors, in the industrial production of cobaltous oxide, and potentially for thermal energy storage. The kinetics of decomposition in the presence of water vapor is poorly understood but nevertheless important in the above situations. The decomposition reaction has mainly been studied in air or inert environments. Here, we report data on the kinetics of the decomposition reaction at temperatures up to 270 °C in the presence of saturated water vapor. We show that CoO can be obtained as the decomposition product under a low dissolved oxygen level of <2 mg/L. The decomposition follows the Avrami Erofeev kinetics model with rate constants of 0.3 h-1 and 0.56 h-1 at 260 and 270 °C, respectively. In comparison, decomposition in N2 and air environments showed much faster rates on the order of min-1. Data reported here are important in the fundamental understanding of the reaction kinetics and in identifying the mechanism for the decomposition of cobalt hydroxide and other brucite-like hydroxides.

Original languageEnglish (US)
Pages (from-to)491-496
Number of pages6
JournalIndustrial and Engineering Chemistry Research
Volume59
Issue number1
DOIs
StatePublished - Jan 8 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Hydrothermal Decomposition of Cobalt Hydroxide in Saturated Water Vapor'. Together they form a unique fingerprint.

Cite this