TY - JOUR
T1 - Hydrogel-Based Oxygen and Drug Delivery Dressing for Improved Wound Healing
AU - Ren, Wen
AU - Sands, Mia
AU - Han, Xiaoxue
AU - Tsipursky, Michael
AU - Irudayaraj, Joseph
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society
PY - 2024/6/4
Y1 - 2024/6/4
N2 - Herein, we propose a Carbopol hydrogel-based oxygen nanodelivery “nanohyperbaric” system as a wound dressing material for an enhanced wound healing process. Oxygen nanobubbles (ONBs) were used to supply oxygen, and collagenase was added in the gel as a drug model. Both oxygen and collagenase would benefit the wound healing process, and the Carbopol hydrogel serves as the matrix to load ONBs and collagenase in the wound dressing. The obtained ONB-embedded Carbopol hydrogel with collagenase (ONB-CC) could provide 12.08 ± 0.75 μg of oxygen from 1 mL of ONB-CC and exhibited a notable capacity to prolong the oxygen holding for up to 3 weeks and maintained the enzymatic activity of collagenase at more than 0.05 U per 0.1 mL of ONB-CC for up to 17 days. With HDFa cells, the ONB-CC did not show a notable effect on the cell viability. In a scratch assay, the oxygen from ONBs or collagenase aided cell migration; further, the ONB-CC induced the most obvious scratch closure, indicating an improvement in wound healing as a cocktail in the ONB-CC. The mRNA expression further demonstrated the effectiveness of the ONB-CC. Studies in rats with punched wounds treated with the ONB-CC dressing showed improved wound closure. Histopathological images showed that the ONB-CC dressing enhanced re-epithelization and formation of new blood vessels and hair follicles. The proposed ONB-CC has excellent potential as an ideal wound dressing material to accelerate wound healing by integration of multiple functions.
AB - Herein, we propose a Carbopol hydrogel-based oxygen nanodelivery “nanohyperbaric” system as a wound dressing material for an enhanced wound healing process. Oxygen nanobubbles (ONBs) were used to supply oxygen, and collagenase was added in the gel as a drug model. Both oxygen and collagenase would benefit the wound healing process, and the Carbopol hydrogel serves as the matrix to load ONBs and collagenase in the wound dressing. The obtained ONB-embedded Carbopol hydrogel with collagenase (ONB-CC) could provide 12.08 ± 0.75 μg of oxygen from 1 mL of ONB-CC and exhibited a notable capacity to prolong the oxygen holding for up to 3 weeks and maintained the enzymatic activity of collagenase at more than 0.05 U per 0.1 mL of ONB-CC for up to 17 days. With HDFa cells, the ONB-CC did not show a notable effect on the cell viability. In a scratch assay, the oxygen from ONBs or collagenase aided cell migration; further, the ONB-CC induced the most obvious scratch closure, indicating an improvement in wound healing as a cocktail in the ONB-CC. The mRNA expression further demonstrated the effectiveness of the ONB-CC. Studies in rats with punched wounds treated with the ONB-CC dressing showed improved wound closure. Histopathological images showed that the ONB-CC dressing enhanced re-epithelization and formation of new blood vessels and hair follicles. The proposed ONB-CC has excellent potential as an ideal wound dressing material to accelerate wound healing by integration of multiple functions.
UR - http://www.scopus.com/inward/record.url?scp=85194173026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194173026&partnerID=8YFLogxK
U2 - 10.1021/acsomega.4c03324
DO - 10.1021/acsomega.4c03324
M3 - Article
C2 - 38854553
AN - SCOPUS:85194173026
SN - 2470-1343
VL - 9
SP - 24095
EP - 24104
JO - ACS Omega
JF - ACS Omega
IS - 22
ER -