Hydrodynamic attractor and the fate of perturbative expansions in Gubser flow

Gabriel S. Denicol, Jorge Noronha

Research output: Contribution to journalArticlepeer-review


Perturbative expansions, such as the well-known gradient series and the recently proposed slow-roll expansion, have been recently used to investigate the emergence of hydrodynamic behavior in systems undergoing Bjorken flow. In this paper we determine for the first time the large order behavior of these perturbative expansions in relativistic hydrodynamics in the case of Gubser flow. While both series diverge, the slow-roll series can provide a much better overall description of the system's dynamics than the gradient expansion when both series are truncated at low orders. The truncated slow-roll series can also describe the attractor solution of Gubser flow as long as the system is sufficiently close to equilibrium near the origin (i.e., ρ=0) in dS3 - R. Differently than the case of Bjorken flow, here we show that the Gubser flow attractor solution is not solely a function of the effective Knudsen number τRσμνσμν∼τRtanhρ. Our results give further support to the idea that new resummed constitutive relations between dissipative currents and the gradients of conserved quantities can emerge in systems far from equilibrium that are beyond the regime of validity of the usual gradient expansion.

Original languageEnglish (US)
Article number116004
JournalPhysical Review D
Issue number11
StatePublished - Jun 10 2019
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Hydrodynamic attractor and the fate of perturbative expansions in Gubser flow'. Together they form a unique fingerprint.

Cite this