Hybrid Sampling/Optimization-based Planning for Agile Jumping Robots on Challenging Terrains

Yanran Ding, Mengchao Zhang, Chuanzheng Li, Hae Won Park, Kris Hauser

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes a hybrid planning framework that generates complex dynamic motion plans for jumping legged robots to traverse challenging terrains. By employing a motion primitive, the original problem is decoupled as path planning followed by a trajectory optimization (TO) module that handles dynamics. A variant of a kinodynamic Rapidly-exploring Random Trees (RRT) planner finds a path as a parabola sequence between stance phases. To make this fast, a reachability informed control sampling scheme leverages a precomputed velocity reachability map. The path is post-processed to eliminate redundant jumps and passed to the TO module to find a dynamically feasible trajectory. Simulation results are presented where the proposed hybrid planner solves challenging terrains by executing multiple consecutive jumps, producing novel strategies to leap over large gaps by leveraging dynamics. In a physical experiment, the hybrid planner is tested on a real robot successfully traversing a challenging terrain.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2839-2845
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: May 30 2021Jun 5 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period5/30/216/5/21

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Hybrid Sampling/Optimization-based Planning for Agile Jumping Robots on Challenging Terrains'. Together they form a unique fingerprint.

Cite this