Hybrid power/energy generation system design through multistage design optimization problem with complementarity constraints

Shen Lu, Nathan B. Schroeder, Harrison Hyung Min Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The optimal design of hybrid power generation systems (HPGS) can significantly improve the economical and technical performance of power supply. However, the discrete-time simulation with logical disjunctions involved in HPGS design usually leads to a nonsmooth optimization model, to which well established techniques for smooth nonlinear optimization could not be directly applied. This paper proposes a multistage design optimization problem with complementarity constraints approach for HPGS design, which introduces a complementarity formulation of the nonsmooth logical disjunction, as well as a multistage decomposition framework, to ensure a fast local solution. A numerical study of a stand-alone hybrid photovoltaic (PV)/wind power generation system is presented to demonstrate the effectiveness of the proposed approach.

Original languageEnglish (US)
Title of host publicationASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Pages633-645
Number of pages13
EditionPARTS A AND B
DOIs
StatePublished - Dec 1 2010
EventASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010 - Montreal, QC, Canada
Duration: Aug 15 2010Aug 18 2010

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume1

Other

OtherASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
CountryCanada
CityMontreal, QC
Period8/15/108/18/10

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Hybrid power/energy generation system design through multistage design optimization problem with complementarity constraints'. Together they form a unique fingerprint.

Cite this