Abstract
Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity compared to that of the human immunodeficiency virus type 1 (HIV-1) NC protein. HTLV-1 NC contains two zinc fingers, each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is required for recognition and packaging of the viral RNA and is also a nucleic acid chaperone protein that facilitates nucleic acid restructuring during reverse transcription. Because of similarities in structures between the two retroviruses, we have used single-molecule fluorescence energy transfer to investigate the chaperoning activity of the HTLV-1 NC protein. The results indicate that the HTLV-1 NC protein induces structural changes by opening the transactivation response (TAR) DNA hairpin to an even greater extent than HIV-1 NC. However, unlike HIV-1 NC, HTLV-1 NC does not chaperone the strand-transfer reaction involving TAR DNA. These results suggest that, despite its effective destabilization capability, HTLV-1 NC is not as effective at overall chaperone function as is its HIV-1 counterpart.
Original language | English (US) |
---|---|
Pages (from-to) | 12164-12171 |
Number of pages | 8 |
Journal | Journal of virology |
Volume | 82 |
Issue number | 24 |
DOIs | |
State | Published - Dec 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- Microbiology
- Immunology
- Insect Science
- Virology