Human Shape Representations Are Not an Emergent Property of Learning to Classify Objects

Gaurav Malhotra, Marin Dujmović, John Hummel, Jeffrey S. Bowers

Research output: Contribution to journalArticlepeer-review

Abstract

Humans are particularly sensitive to relationships between parts of objects. It remains unclear why this is. One hypothesis is that relational features are highly diagnostic of object categories and emerge as a result of learning to classify objects. We tested this by analyzing the internal representations of supervised convolutional neural networks (CNNs) trained to classify large sets of objects. We found that CNNs do not show the same sensitivity to relational changes as previously observed for human participants. Furthermore, when we precisely controlled the deformations to objects, human behavior was best predicted by the number of relational changes while CNNs were equally sensitive to all changes. Even changing the statistics of the learning environment by making relations uniquely diagnostic did not make networks more sensitive to relations in general. Our results show that learning to classify objects is not sufficient for the emergence of human shape representations. Instead, these results suggest that humans are selectively sensitive to relational changes because they build representations of distal objects from their retinal images and interpret relational changes as changes to these distal objects. This inferential process makes human shape representations qualitatively different from those of artificial neural networks optimized to perform image classification.

Original languageEnglish (US)
Pages (from-to)3380-3402
Number of pages23
JournalJournal of Experimental Psychology: General
Volume152
Issue number12
DOIs
StatePublished - 2023

Keywords

  • convolutional neural networks
  • object recognition
  • relational representation
  • shape representation
  • vision

ASJC Scopus subject areas

  • Experimental and Cognitive Psychology
  • General Psychology
  • Developmental Neuroscience

Fingerprint

Dive into the research topics of 'Human Shape Representations Are Not an Emergent Property of Learning to Classify Objects'. Together they form a unique fingerprint.

Cite this