How regularization affects the critical points in linear networks

Amirhossein Taghvaei, Jin W. Kim, Prashant G. Mehta

Research output: Contribution to journalConference articlepeer-review


This paper is concerned with the problem of representing and learning a linear transformation using a linear neural network. In recent years, there is a growing interest in the study of such networks, in part due to the successes of deep learning. The main question of this body of research (and also of our paper) is related to the existence and optimality properties of the critical points of the mean-squared loss function. An additional primary concern of our paper pertains to the robustness of these critical points in the face of (a small amount of) regularization. An optimal control model is introduced for this purpose and a learning algorithm (backprop with weight decay) derived for the same using the Hamilton's formulation of optimal control. The formulation is used to provide a complete characterization of the critical points in terms of the solutions of a nonlinear matrix-valued equation, referred to as the characteristic equation. Analytical and numerical tools from bifurcation theory are used to compute the critical points via the solutions of the characteristic equation.

Original languageEnglish (US)
Pages (from-to)2503-2513
Number of pages11
JournalAdvances in Neural Information Processing Systems
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'How regularization affects the critical points in linear networks'. Together they form a unique fingerprint.

Cite this