Homing peptide-conjugated gold nanorods: The effect of amino acid sequence display on nanorod uptake and cellular proliferation

Alaaldin M. Alkilany, Stefano P. Boulos, Samuel E. Lohse, Lucas B. Thompson, Catherine J. Murphy

Research output: Contribution to journalArticle

Abstract

Gold nanorods (GNRs) have attracted significant interest in the field of medicine as theranostic agents for both imaging and photothermal ablation of cancerous cells/tissues. Targeting theranostic GNRs specifically to cancer cells is necessary to enhance treatment efficacy and minimize undesired side effects. In this study, targeting functionalized GNR to EphA2 receptors that are overexpressed on prostate cancer cells was investigated as a strategy to achieve enhanced GNR uptake by cancer cells. In addition, the influence of targeting peptide orientation on functionalized GNR uptake by PC-3 cells was explored. GNRs of aspect ratio 4 were functionalized with an EphA2 homing peptide, YSA, using a layer-by-layer polypeptide wrapping approach. In parallel, an analogous population of YSA-modified GNRs, which display a reversed YSA peptide, with the N- and C- termini reversed, was also prepared. GC-MS analysis of the YSA-GNRs indicated that functionalized GNRs displayed approximately 3000 peptides/GNR. The functionalized GNRs remained well-dispersed in biological media for short times (<24 h). An increase in GNRs uptake of the YSA-GNRs by PC-3 cells, compared to the reversed YSA-GNRs, was observed under identical incubation conditions. Lastly, the effect of the YSA-GNRs binding to EphA2 receptors on prostate cancer cell proliferation was also studied. The YSA-functionalized GNRs inhibit PC-3 proliferation at a significantly lower effective dose than free YSA. Overall, the polypeptide LBL deposition technique provides a facile route to target nanoparticles to overexpressed cellular receptors, with the caveat that the specific orientation and display of the targeting moiety plays a critical role in the interaction between the nanoparticle and the cell.

Original languageEnglish (US)
Pages (from-to)1162-1171
Number of pages10
JournalBioconjugate Chemistry
Volume25
Issue number6
DOIs
StatePublished - Jun 18 2014

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Organic Chemistry
  • Pharmaceutical Science
  • Biomedical Engineering
  • Pharmacology
  • Medicine(all)

Fingerprint Dive into the research topics of 'Homing peptide-conjugated gold nanorods: The effect of amino acid sequence display on nanorod uptake and cellular proliferation'. Together they form a unique fingerprint.

  • Cite this