TY - JOUR

T1 - Holographic geometry of the renormalization group and higher spin symmetries

AU - Leigh, Robert G.

AU - Parrikar, Onkar

AU - Weiss, Alexander B.

PY - 2014/5/28

Y1 - 2014/5/28

N2 - We consider the Wilson-Polchinski exact renormalization group (RG) applied to the generating functional of single-trace operators at a free-fixed point in d=2+1 dimensions. By exploiting the rich symmetry structure of free-field theory, we study the geometric nature of the RG equations and the associated Ward identities. The geometry, as expected, is holographic, with anti-de Sitter spacetime emerging correspondent with RG fixed points. The field theory construction gives us a particular vector bundle over the d+1-dimensional RG mapping space, called a jet bundle, whose structure group arises from the linear orthogonal bilocal transformations of the bare fields in the path integral. The sources for quadratic operators constitute a connection on this bundle and a section of its endomorphism bundle. Recasting the geometry in terms of the corresponding principal bundle, we arrive at a structure remarkably similar to the Vasiliev theory, where the horizontal part of the connection on the principal bundle is Vasiliev's higher spin connection, while the vertical part (the Faddeev-Popov ghost) corresponds to the S field. The Vasiliev equations are then, respectively, the RG equations and the Becchi-Rouet-Stora-Tyutin equations, with the RG beta functions encoding bulk interactions. Finally, we remark that a large class of interacting field theories can be studied through integral transforms of our results, and it is natural to organize this in terms of a large N expansion.

AB - We consider the Wilson-Polchinski exact renormalization group (RG) applied to the generating functional of single-trace operators at a free-fixed point in d=2+1 dimensions. By exploiting the rich symmetry structure of free-field theory, we study the geometric nature of the RG equations and the associated Ward identities. The geometry, as expected, is holographic, with anti-de Sitter spacetime emerging correspondent with RG fixed points. The field theory construction gives us a particular vector bundle over the d+1-dimensional RG mapping space, called a jet bundle, whose structure group arises from the linear orthogonal bilocal transformations of the bare fields in the path integral. The sources for quadratic operators constitute a connection on this bundle and a section of its endomorphism bundle. Recasting the geometry in terms of the corresponding principal bundle, we arrive at a structure remarkably similar to the Vasiliev theory, where the horizontal part of the connection on the principal bundle is Vasiliev's higher spin connection, while the vertical part (the Faddeev-Popov ghost) corresponds to the S field. The Vasiliev equations are then, respectively, the RG equations and the Becchi-Rouet-Stora-Tyutin equations, with the RG beta functions encoding bulk interactions. Finally, we remark that a large class of interacting field theories can be studied through integral transforms of our results, and it is natural to organize this in terms of a large N expansion.

UR - http://www.scopus.com/inward/record.url?scp=84901999628&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901999628&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.89.106012

DO - 10.1103/PhysRevD.89.106012

M3 - Article

AN - SCOPUS:84901999628

SN - 1550-7998

VL - 89

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

IS - 10

M1 - 106012

ER -