HIT: Nested named entity recognition via head-tail pair and token interaction

Yu Wang, Yun Li, Hanghang Tong, Ziye Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Named Entity Recognition (NER) is a fundamental task in natural language processing. In order to identify entities with nested structure, many sophisticated methods have been recently developed based on either the traditional sequence labeling approaches or directed hypergraph structures. Despite being successful, these methods often fall short in striking a good balance between the expression power for nested structure and the model complexity. To address this issue, we present a novel nested NER model named HIT. Our proposed HIT model leverages two key properties pertaining to the (nested) named entity, including (1) explicit boundary tokens and (2) tight internal connection between tokens within the boundary. Specifically, we design (1) Head-Tail Detector based on the multi-head self-attention mechanism and bi-affine classifier to detect boundary tokens, and (2) Token Interaction Tagger based on traditional sequence labeling approaches to characterize the internal token connection within the boundary. Experiments on three public NER datasets demonstrate that the proposed HIT achieves state-of-the-art performance.

Original languageEnglish (US)
Title of host publicationEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages6027-6036
Number of pages10
ISBN (Electronic)9781952148606
DOIs
StatePublished - 2020
Event2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online
Duration: Nov 16 2020Nov 20 2020

Publication series

NameEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
CityVirtual, Online
Period11/16/2011/20/20

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'HIT: Nested named entity recognition via head-tail pair and token interaction'. Together they form a unique fingerprint.

Cite this