Higher-order formulation of the pressure Poisson equation on collocated finite-difference grids

Fady M. Najjar, S. P. Vanka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A systematic numerical study has been conducted to investigate an accurate discretization of the pressure Poisson equation arising out of fractional step algorithms solving the Navier-Stokes equations on a collocated grid. Different representations of the divergence and gradient operators are studied for accuracy and satisfaction of the compatibility condition. The different formulations are tested in two model two-dimensional flows, namely the decay of a vortex and the flow in a driven-cavity. The best methodology seems to be one which combines a finite-volume discretization of the divergence operator with a high-order representation of the gradient operator.

Original languageEnglish (US)
Title of host publicationAdvances in Computational Methods in Fluid Dynamics
PublisherPubl by ASME
Pages177-185
Number of pages9
ISBN (Print)0791813789
StatePublished - 1994
EventProceedings of the 1994 ASME Fluids Engineering Division Summer Meeting. Part 9 (of 18) - Lake Tahoe, NV, USA
Duration: Jun 19 1994Jun 23 1994

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED
Volume196

Other

OtherProceedings of the 1994 ASME Fluids Engineering Division Summer Meeting. Part 9 (of 18)
CityLake Tahoe, NV, USA
Period6/19/946/23/94

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Higher-order formulation of the pressure Poisson equation on collocated finite-difference grids'. Together they form a unique fingerprint.

Cite this