TY - JOUR
T1 - Higher order corrections to effective low-energy theories for strongly correlated electron systems
AU - Chernyshev, A. L.
AU - Galanakis, D.
AU - Phillips, P.
AU - Rozhkov, A. V.
AU - Tremblay, A. M.S.
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2004/12
Y1 - 2004/12
N2 - Three well-known perturbative approaches to deriving low-energy effective theories, the degenerate Brillouin-Wigner perturbation theory (projection method), the canonical transformation, and the resolvent methods, are compared. We use the Hubbard model as an example to show how, to fourth order in hopping t, all methods lead to the same effective theory, namely the t-J model with ring exchange and various correlated hoppings. We emphasize subtle technical difficulties that make such a derivation less trivial to carry out for orders higher than second. We also show that in higher orders, different approaches can lead to seemingly different forms for the low-energy Hamiltonian. All of these forms are equivalent since they are connected by an additional unitary transformation whose generator is given explicitly. The importance of transforming the operators is emphasized and the equivalence of their transformed structure within the different approaches is also demonstrated.
AB - Three well-known perturbative approaches to deriving low-energy effective theories, the degenerate Brillouin-Wigner perturbation theory (projection method), the canonical transformation, and the resolvent methods, are compared. We use the Hubbard model as an example to show how, to fourth order in hopping t, all methods lead to the same effective theory, namely the t-J model with ring exchange and various correlated hoppings. We emphasize subtle technical difficulties that make such a derivation less trivial to carry out for orders higher than second. We also show that in higher orders, different approaches can lead to seemingly different forms for the low-energy Hamiltonian. All of these forms are equivalent since they are connected by an additional unitary transformation whose generator is given explicitly. The importance of transforming the operators is emphasized and the equivalence of their transformed structure within the different approaches is also demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=13944258416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=13944258416&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.70.235111
DO - 10.1103/PhysRevB.70.235111
M3 - Article
AN - SCOPUS:13944258416
SN - 1098-0121
VL - 70
SP - 1
EP - 12
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 23
M1 - 235111
ER -