Abstract
The development and application of genomic tools to loblolly pine (Pinus taeda L.) offer promising insights into the organization and structure of conifer genomes. The application of a high-throughput genotyping assay across diverse forest tree species, however, is currently limited taxonomically. This is despite the ongoing development of genome-scale projects aiming at the construction of expressed sequence tag (EST) libraries and the resequencing of EST-derived unigenes for a diverse array of forest tree species. In this paper, we report on the application of Illumina's high-throughput GoldenGate™ SNP genotyping assay to a loblolly pine mapping population. Single nucleotide polymorphisms (SNPs) were identified through resequencing of previously identified wood quality, drought tolerance, and disease resistance candidate genes prior to genotyping. From that effort, a 384 multiplexed SNP assay was developed for high-throughput genotyping. Approximately 67% of the 384 SNPs queried converted into high-quality genotypes for the 48 progeny samples. Of those 257 successfully genotyped SNPs, 70 were segregating within the mapping population. A total of 27 candidate genes were subsequently mapped onto the existing loblolly pine consensus map, which consists of 12 linkage groups spanning a total map distance of 1,227.6 cM. The ability of SNPs to be mapped to the same position as fragment-based markers previously developed within the same candidate genes, as well as the pivotal role that SNPs currently play in the dissection of complex phenotypic traits, illustrate the usefulness of high-throughput SNP genotyping technologies to the continued development of pine genomics.
Original language | English (US) |
---|---|
Pages (from-to) | 225-234 |
Number of pages | 10 |
Journal | Tree Genetics and Genomes |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2009 |
Externally published | Yes |
Keywords
- Genomics
- Genotyping
- GoldenGate™
- Linkage mapping
- Loblolly pine
- Pinus taeda
- Single nucleotide polymorphisms
ASJC Scopus subject areas
- Forestry
- Molecular Biology
- Genetics
- Horticulture