TY - JOUR
T1 - High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system
AU - Tan, Yafang
AU - Tang, Tiantian
AU - Xu, Haisheng
AU - Zhu, Chenqi
AU - Cunningham, Brian T.
PY - 2015/11/5
Y1 - 2015/11/5
N2 - We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings.
AB - We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings.
UR - http://www.scopus.com/inward/record.url?scp=84930633575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930633575&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2015.05.041
DO - 10.1016/j.bios.2015.05.041
M3 - Article
C2 - 26043313
AN - SCOPUS:84930633575
VL - 73
SP - 32
EP - 40
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
SN - 0956-5663
ER -