High-resolution 1H-MRSI of the brain using SPICE: Data acquisition and image reconstruction

Fan Lam, Chao Ma, Bryan Clifford, Curtis L. Johnson, Zhi Pei Liang

Research output: Contribution to journalArticlepeer-review


Purpose: To develop data acquisition and image reconstruction methods to enable high-resolution 1H MR spectroscopic imaging (MRSI) of the brain, using the recently proposed subspace-based spectroscopic imaging framework called SPICE (SPectroscopic Imaging by exploiting spatiospectral CorrElation). Theory and Methods: SPICE is characterized by the use of a subspace model for both data acquisition and image reconstruction. For data acquisition, we propose a novel spatiospectral encoding scheme that provides hybrid data sets for determining the subspace structure and for image reconstruction using the subspace model. More specifically, we use a hybrid chemical shift imaging /echo-planar spectroscopic imaging sequence for two-dimensional (2D) MRSI and a dual-density, dual-speed echo-planar spectroscopic imaging sequence for three-dimensional (3D) MRSI. For image reconstruction, we propose a method that can determine the subspace structure and the high-resolution spatiospectral reconstruction from the hybrid data sets generated by the proposed sequences, incorporating field inhomogeneity correction and edge-preserving regularization. Results: Phantom and in vivo brain experiments were performed to evaluate the performance of the proposed method. For 2D MRSI experiments, SPICE is able to produce high-SNR spatiospectral distributions with an approximately 3 mm nominal in-plane resolution from a 10-min acquisition. For 3D MRSI experiments, SPICE is able to achieve an approximately 3 mm in-plane and 4 mm through-plane resolution in about 25 min. Conclusion: Special data acquisition and reconstruction methods have been developed for high-resolution 1H-MRSI of the brain using SPICE. Using these methods, SPICE is able to produce spatiospectral distributions of 1H metabolites in the brain with high spatial resolution, while maintaining a good SNR. These capabilities should prove useful for practical applications of SPICE. Magn Reson Med 76:1059–1070, 2016.

Original languageEnglish (US)
Pages (from-to)1059-1070
Number of pages12
JournalMagnetic Resonance in Medicine
Issue number4
StatePublished - Oct 1 2016


  • brain imaging
  • chemical shift imaging
  • echo-planar spectroscopic imaging
  • high-resolution spectroscopic imaging
  • low-rank model
  • partial separability
  • subspace model

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'High-resolution <sup>1</sup>H-MRSI of the brain using SPICE: Data acquisition and image reconstruction'. Together they form a unique fingerprint.

Cite this