High-resolution, 3D multi-TE 1H MRSI using fast spatiospectral encoding and subspace imaging

Zepeng Wang, Yahang Li, Fan Lam

Research output: Contribution to journalArticlepeer-review


Purpose: To develop a novel method to achieve fast, high-resolution, 3D multi-TE 1H-MRSI of the brain. Methods: A new multi-TE MRSI acquisition strategy was developed that integrates slab selective excitation with adiabatic refocusing for better volume coverage, rapid spatiospectral encoding, sparse multi-TE sampling, and interleaved water navigators for field mapping and calibration. Special data processing strategies were developed to interpolate the sparsely sampled data, remove nuisance signals, and reconstruct multi-TE spatiospectral distributions with high SNR. Phantom and in vivo experiments have been carried out to demonstrate the capability of the proposed method. Results: The proposed acquisition can produce multi-TE 1H-MRSI data with three TEs at a nominal spatial resolution of 3.4 × 3.4 × 5.3 mm3 in around 20 min. High-SNR brain metabolite spatiospectral reconstructions can be obtained from both a metabolite phantom and in vivo experiments by the proposed method. Conclusion: High-resolution, 3D multi-TE 1H-MRSI of the brain can be achieved within clinically feasible time. This capability, with further optimizations, could be translated to clinical applications and neuroscience studies where simultaneously mapping metabolites and neurotransmitters and TE-dependent molecular spectral changes are of interest.

Original languageEnglish (US)
Pages (from-to)1103-1118
Number of pages16
JournalMagnetic Resonance in Medicine
Issue number3
StatePublished - Mar 2022

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'High-resolution, 3D multi-TE 1H MRSI using fast spatiospectral encoding and subspace imaging'. Together they form a unique fingerprint.

Cite this