TY - GEN
T1 - High-level Synthesis for Domain Specific Computing
AU - Ye, Hanchen
AU - Jun, Hyegang
AU - Yang, Jin
AU - Chen, Deming
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/3/26
Y1 - 2023/3/26
N2 - This paper proposes a High-Level Synthesis (HLS) framework for domain-specific computing. The framework contains three key components: 1) ScaleHLS, a multi-level HLS compilation flow. Aimed to address the lack of expressiveness and hardware-dedicated representation of traditional software-oriented compilers. ScaleHLS introduces a hierarchical intermediate representation (IR) for the progressive optimization of HLS designs defined in various high-level languages. ScaleHLS consists of three levels of optimizations, including graph, loop, and directive levels, to realize an efficient compilation pipeline and generate highly-optimized domain-specific accelerators. 2) AutoScaleDSE is an automated design space exploration (DSE) engine. Real-world HLS designs often come with large design spaces that are difficult for designers to explore. Meanwhile, the connections between different components of an HLS design further complicate the design spaces. In order to address the DSE problem, AutoScaleDSE proposes a random forest classifier and a graph-driven approach to improve the accuracy of estimating the intermediate DSE results while reducing the time and computational cost. With this new approach, AutoScaleDSE can evaluate thousands of HLS design points and find the Pareto-dominating design points within a couple of hours. 3) PyTransform is a flexible pattern-driven design customization flow. Existing HLS flows demand manual code rewriting or intrusive compiler customization to conduct domain-specific optimizations, leading to unscalable or inflexible compiler solutions. PyTransform proposes a Python-based flow that enables users to define custom matching and rewriting patterns at a high level of abstraction, being able to be incorporated into the DSL compilation flow in an automatic and scalable manner. In summary, ScaleHLS, AutoScaleDSE, and PyTransform aim to address the challenges present in the compilation, DSE, and customization of existing HLS flows, respectively. With the three key components, our newly proposed HLS framework can deliver a scalable and extensible solution for designing domain-specific languages to automate and speed up the process of designing domain-specific accelerators.
AB - This paper proposes a High-Level Synthesis (HLS) framework for domain-specific computing. The framework contains three key components: 1) ScaleHLS, a multi-level HLS compilation flow. Aimed to address the lack of expressiveness and hardware-dedicated representation of traditional software-oriented compilers. ScaleHLS introduces a hierarchical intermediate representation (IR) for the progressive optimization of HLS designs defined in various high-level languages. ScaleHLS consists of three levels of optimizations, including graph, loop, and directive levels, to realize an efficient compilation pipeline and generate highly-optimized domain-specific accelerators. 2) AutoScaleDSE is an automated design space exploration (DSE) engine. Real-world HLS designs often come with large design spaces that are difficult for designers to explore. Meanwhile, the connections between different components of an HLS design further complicate the design spaces. In order to address the DSE problem, AutoScaleDSE proposes a random forest classifier and a graph-driven approach to improve the accuracy of estimating the intermediate DSE results while reducing the time and computational cost. With this new approach, AutoScaleDSE can evaluate thousands of HLS design points and find the Pareto-dominating design points within a couple of hours. 3) PyTransform is a flexible pattern-driven design customization flow. Existing HLS flows demand manual code rewriting or intrusive compiler customization to conduct domain-specific optimizations, leading to unscalable or inflexible compiler solutions. PyTransform proposes a Python-based flow that enables users to define custom matching and rewriting patterns at a high level of abstraction, being able to be incorporated into the DSL compilation flow in an automatic and scalable manner. In summary, ScaleHLS, AutoScaleDSE, and PyTransform aim to address the challenges present in the compilation, DSE, and customization of existing HLS flows, respectively. With the three key components, our newly proposed HLS framework can deliver a scalable and extensible solution for designing domain-specific languages to automate and speed up the process of designing domain-specific accelerators.
KW - Design space exploration
KW - Domain-specific computing
KW - Domain-specific language
KW - HLS
KW - MLIR
UR - http://www.scopus.com/inward/record.url?scp=85151513828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85151513828&partnerID=8YFLogxK
U2 - 10.1145/3569052.3580027
DO - 10.1145/3569052.3580027
M3 - Conference contribution
AN - SCOPUS:85151513828
T3 - Proceedings of the International Symposium on Physical Design
SP - 211
EP - 219
BT - ISPD 2023 - Proceedings of the 2023 International Symposium on Physical Design
PB - Association for Computing Machinery
T2 - 32nd ACM International Symposium on Physical Design, ISPD 2023
Y2 - 26 March 2023 through 29 March 2023
ER -